Differentiating legacy wellbores in the scottish north sea using multi-criteria decision analysis with a view to minimising containment risk for carbon capture and storage

IF 4.6 3区 工程技术 Q2 ENERGY & FUELS International Journal of Greenhouse Gas Control Pub Date : 2025-02-15 DOI:10.1016/j.ijggc.2025.104336
Benjamin Pullen , Aaron Cahill , Daniel Arnold
{"title":"Differentiating legacy wellbores in the scottish north sea using multi-criteria decision analysis with a view to minimising containment risk for carbon capture and storage","authors":"Benjamin Pullen ,&nbsp;Aaron Cahill ,&nbsp;Daniel Arnold","doi":"10.1016/j.ijggc.2025.104336","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon Capture and Storage (CCS) is a critical technology for mitigating climate change by securely storing CO₂ emissions underground. Former oil and gas fields are prime candidates for CCS due to their proven storage capacity, existing infrastructure, and favourable geology. However, legacy wells in these fields pose significant containment risks. Assessing these risks typically requires site-specific evaluations, which are time-intensive and impractical at scale, hindering systematic regional assessments, particularly in areas where CCS is expected to expand.</div><div>We developed a weight sum model (WSM) multi-criteria decision analysis (MCDA) approach to evaluate the containment risks of 12,264 legacy oil and gas wells in the North Sea. The model was informed by expert elicitation involving 54 global subject matter experts, 70 % of whom are industry professionals with over a decade of CCS experience. Wellbores were assigned consideration scores reflecting their containment risks based on geospatial, temporal, and engineering factors, weighted by expert consensus. The mean consideration score was 0.55 (range: 0–1), with outlier thresholds at 0.74 and 0.36, identifying 506 wells with significantly higher or lower risks to containment.</div><div>Among Scotland's nine most promising CO₂ storage sites, the Miller Oil Field and Captain Sandstone Fairway represent the highest and lowest cases of consideration score, respectively. By integrating expert knowledge into an MCDA framework, this approach provides a systematic method to prioritise wellbores for further evaluation based on risk profiles, supplementing traditional case-by-case assessments. It offers a scalable solution for managing containment risks across domains with multiple planned CCS projects.</div></div>","PeriodicalId":334,"journal":{"name":"International Journal of Greenhouse Gas Control","volume":"142 ","pages":"Article 104336"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Greenhouse Gas Control","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1750583625000349","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Carbon Capture and Storage (CCS) is a critical technology for mitigating climate change by securely storing CO₂ emissions underground. Former oil and gas fields are prime candidates for CCS due to their proven storage capacity, existing infrastructure, and favourable geology. However, legacy wells in these fields pose significant containment risks. Assessing these risks typically requires site-specific evaluations, which are time-intensive and impractical at scale, hindering systematic regional assessments, particularly in areas where CCS is expected to expand.
We developed a weight sum model (WSM) multi-criteria decision analysis (MCDA) approach to evaluate the containment risks of 12,264 legacy oil and gas wells in the North Sea. The model was informed by expert elicitation involving 54 global subject matter experts, 70 % of whom are industry professionals with over a decade of CCS experience. Wellbores were assigned consideration scores reflecting their containment risks based on geospatial, temporal, and engineering factors, weighted by expert consensus. The mean consideration score was 0.55 (range: 0–1), with outlier thresholds at 0.74 and 0.36, identifying 506 wells with significantly higher or lower risks to containment.
Among Scotland's nine most promising CO₂ storage sites, the Miller Oil Field and Captain Sandstone Fairway represent the highest and lowest cases of consideration score, respectively. By integrating expert knowledge into an MCDA framework, this approach provides a systematic method to prioritise wellbores for further evaluation based on risk profiles, supplementing traditional case-by-case assessments. It offers a scalable solution for managing containment risks across domains with multiple planned CCS projects.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.20
自引率
10.30%
发文量
199
审稿时长
4.8 months
期刊介绍: The International Journal of Greenhouse Gas Control is a peer reviewed journal focusing on scientific and engineering developments in greenhouse gas control through capture and storage at large stationary emitters in the power sector and in other major resource, manufacturing and production industries. The Journal covers all greenhouse gas emissions within the power and industrial sectors, and comprises both technical and non-technical related literature in one volume. Original research, review and comments papers are included.
期刊最新文献
Differentiating legacy wellbores in the scottish north sea using multi-criteria decision analysis with a view to minimising containment risk for carbon capture and storage Experimental investigation of the interfacial debonding strength of class G cement and the implications to well integrity Editorial Board Evaluating the regional geological characteristics of the St. Peter Sandstone and Everton Formation for CO2 storage in Southern Illinois: A case study on site-specific injection feasibility in Washington County, Illinois Feasibility, conditions, and opportunities for achieving net-negative emissions in the global cement industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1