Lucrezia Manieri, Alessandro Falsone, Maria Prandini
{"title":"DualBi: A dual bisection algorithm for non-convex problems with a scalar complicating constraint","authors":"Lucrezia Manieri, Alessandro Falsone, Maria Prandini","doi":"10.1016/j.automatica.2025.112198","DOIUrl":null,"url":null,"abstract":"<div><div>This paper addresses non-convex constrained optimization problems that are characterized by a scalar complicating constraint. We propose an iterative bisection method for the dual problem (DualBi Algorithm) that recovers a feasible primal solution, with a performance that progressively improves throughout iterations. Application to multi-agent problems with a scalar coupling constraint results in a decentralized resolution scheme where a central unit is in charge of updating the (scalar) dual variable while agents compute their local primal variables. In the case of multi-agent MILPs, simulations showcase the performance of the proposed method compared with state-of-the-art duality-based approaches.</div></div>","PeriodicalId":55413,"journal":{"name":"Automatica","volume":"175 ","pages":"Article 112198"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Automatica","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0005109825000895","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper addresses non-convex constrained optimization problems that are characterized by a scalar complicating constraint. We propose an iterative bisection method for the dual problem (DualBi Algorithm) that recovers a feasible primal solution, with a performance that progressively improves throughout iterations. Application to multi-agent problems with a scalar coupling constraint results in a decentralized resolution scheme where a central unit is in charge of updating the (scalar) dual variable while agents compute their local primal variables. In the case of multi-agent MILPs, simulations showcase the performance of the proposed method compared with state-of-the-art duality-based approaches.
期刊介绍:
Automatica is a leading archival publication in the field of systems and control. The field encompasses today a broad set of areas and topics, and is thriving not only within itself but also in terms of its impact on other fields, such as communications, computers, biology, energy and economics. Since its inception in 1963, Automatica has kept abreast with the evolution of the field over the years, and has emerged as a leading publication driving the trends in the field.
After being founded in 1963, Automatica became a journal of the International Federation of Automatic Control (IFAC) in 1969. It features a characteristic blend of theoretical and applied papers of archival, lasting value, reporting cutting edge research results by authors across the globe. It features articles in distinct categories, including regular, brief and survey papers, technical communiqués, correspondence items, as well as reviews on published books of interest to the readership. It occasionally publishes special issues on emerging new topics or established mature topics of interest to a broad audience.
Automatica solicits original high-quality contributions in all the categories listed above, and in all areas of systems and control interpreted in a broad sense and evolving constantly. They may be submitted directly to a subject editor or to the Editor-in-Chief if not sure about the subject area. Editorial procedures in place assure careful, fair, and prompt handling of all submitted articles. Accepted papers appear in the journal in the shortest time feasible given production time constraints.