{"title":"A semi-analytical method for non-linear instability analysis of variable stiffness laminated composite beams under thermo-mechanical loading","authors":"Satyajeet Dash , Tanish Dey , Ayan Haldar , Rajesh Kumar","doi":"10.1016/j.compstruct.2025.118966","DOIUrl":null,"url":null,"abstract":"<div><div>This investigation explores the non-linear instability phenomena of variable stiffness laminated composite (VSLC) beams subjected to thermo-mechanical loading. A semi-analytical model is developed to determine the post-buckling and post-buckled vibration behavior of VSLC beams based on trigonometric shear deformation theory. Non-linear strain equations are formulated based on von-Karman’s geometric non-linearity assumptions. Constitutive relations are modified for VSLC beam to account for various coupling effects that arise due to varying fiber orientation and Poisson effects that arise due to the development of zero-stress conditions in the width direction of beams. Using Gram-Schmidt orthogonalization process, an orthogonal basis for the displacement field is constructed to enhance accuracy and ease. The model employs a displacement-based Ritz approach to derive the matrix representation of the governing equations. The present model is developed assuming equivalent single-layer theory, and material properties and temperature variations are assumed to be constant across the thickness of the beam. Moreover, arc-length method is employed to obtain the non-linear response curves of VSLC beam. Pre-buckled and post-buckled vibration responses are obtained using a standard eigenvalue approach. A parametric analysis is conducted to investigate the effect of slenderness ratio, boundary conditions, and ply-sequence on post-buckling and post-buckled vibration characteristics of VSLC beam.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"357 ","pages":"Article 118966"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026382232500131X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0
Abstract
This investigation explores the non-linear instability phenomena of variable stiffness laminated composite (VSLC) beams subjected to thermo-mechanical loading. A semi-analytical model is developed to determine the post-buckling and post-buckled vibration behavior of VSLC beams based on trigonometric shear deformation theory. Non-linear strain equations are formulated based on von-Karman’s geometric non-linearity assumptions. Constitutive relations are modified for VSLC beam to account for various coupling effects that arise due to varying fiber orientation and Poisson effects that arise due to the development of zero-stress conditions in the width direction of beams. Using Gram-Schmidt orthogonalization process, an orthogonal basis for the displacement field is constructed to enhance accuracy and ease. The model employs a displacement-based Ritz approach to derive the matrix representation of the governing equations. The present model is developed assuming equivalent single-layer theory, and material properties and temperature variations are assumed to be constant across the thickness of the beam. Moreover, arc-length method is employed to obtain the non-linear response curves of VSLC beam. Pre-buckled and post-buckled vibration responses are obtained using a standard eigenvalue approach. A parametric analysis is conducted to investigate the effect of slenderness ratio, boundary conditions, and ply-sequence on post-buckling and post-buckled vibration characteristics of VSLC beam.
期刊介绍:
The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials.
The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.