Novel splice variants of the cytochrome P450 9A19 gene in the domestic silkworm Bombyx mori

IF 1.1 3区 农林科学 Q3 ENTOMOLOGY Journal of Asia-pacific Entomology Pub Date : 2025-02-10 DOI:10.1016/j.aspen.2025.102382
Jin Ha Yun, Seung-Won Park
{"title":"Novel splice variants of the cytochrome P450 9A19 gene in the domestic silkworm Bombyx mori","authors":"Jin Ha Yun,&nbsp;Seung-Won Park","doi":"10.1016/j.aspen.2025.102382","DOIUrl":null,"url":null,"abstract":"<div><div><em>CYP9</em> gene family members participate in neutralization pathways associated with pesticide resistance. Alternative splicing ultimately plays a role in increasing the diversity of the proteome through increasing transcriptome diversity. Here, we characterized various novel <em>CYP9A19</em> isoforms in <em>Bombyx mori</em>. We first identified an exon 4 deletion isoform that was 203 bp smaller than expected due to a deletion of exon 4 from the protein coding sequence (CDS) region of the <em>CYP9A19</em> cDNA. Within the <em>CYP9A19</em> cDNA, there is a 176 bp 5′-untranslated region (UTR); reverse transcription-polymerase chain reaction results showed 74 bp lower and 122 bp higher molecular-weight products compared with the expected size from the 5′-UTR of <em>CYP9A19</em> cDNA in <em>B. mori</em>. Additionally, we found a new sequence (5′-GTCTCAGGTTCAGGGCTCTAGCAATTTTTCACAG-3′) in the 5′-UTR of <em>CYP9A19</em>. Currently, our understanding of the various <em>CYP9A19</em> isoform functions in pesticide degradation and resistance and insect development and differentiation stages remains limited. Therefore, additional studies on the alternative splicing process are needed to verify the biological role of the novel splicing variant of <em>CYP9A19</em> in <em>B. mori</em>. Our findings may provide insight into the genetic background of the processes and mechanisms underlying the stages of insect development and differentiation in lepidoptera species.</div></div>","PeriodicalId":15094,"journal":{"name":"Journal of Asia-pacific Entomology","volume":"28 1","pages":"Article 102382"},"PeriodicalIF":1.1000,"publicationDate":"2025-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Asia-pacific Entomology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1226861525000135","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

CYP9 gene family members participate in neutralization pathways associated with pesticide resistance. Alternative splicing ultimately plays a role in increasing the diversity of the proteome through increasing transcriptome diversity. Here, we characterized various novel CYP9A19 isoforms in Bombyx mori. We first identified an exon 4 deletion isoform that was 203 bp smaller than expected due to a deletion of exon 4 from the protein coding sequence (CDS) region of the CYP9A19 cDNA. Within the CYP9A19 cDNA, there is a 176 bp 5′-untranslated region (UTR); reverse transcription-polymerase chain reaction results showed 74 bp lower and 122 bp higher molecular-weight products compared with the expected size from the 5′-UTR of CYP9A19 cDNA in B. mori. Additionally, we found a new sequence (5′-GTCTCAGGTTCAGGGCTCTAGCAATTTTTCACAG-3′) in the 5′-UTR of CYP9A19. Currently, our understanding of the various CYP9A19 isoform functions in pesticide degradation and resistance and insect development and differentiation stages remains limited. Therefore, additional studies on the alternative splicing process are needed to verify the biological role of the novel splicing variant of CYP9A19 in B. mori. Our findings may provide insight into the genetic background of the processes and mechanisms underlying the stages of insect development and differentiation in lepidoptera species.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Asia-pacific Entomology
Journal of Asia-pacific Entomology Agricultural and Biological Sciences-Insect Science
CiteScore
2.70
自引率
6.70%
发文量
152
审稿时长
69 days
期刊介绍: The journal publishes original research papers, review articles and short communications in the basic and applied area concerning insects, mites or other arthropods and nematodes of economic importance in agriculture, forestry, industry, human and animal health, and natural resource and environment management, and is the official journal of the Korean Society of Applied Entomology and the Taiwan Entomological Society.
期刊最新文献
Novel splice variants of the cytochrome P450 9A19 gene in the domestic silkworm Bombyx mori Stethynium empoascae Subba Rao (Hymenoptera: Mymaridae), a newly recorded egg parasitoid of Amrasca biguttula (Ishida) (Hemiptera: Cicadellidae), a pest of okra on Ogasawara (Bonin) Islands, Japan New complete mitogenomes of four species in tribe Erythroneurini (Hemiptera: Cicadellidae: Typhlocybinae) from China and their phylogenetic analysis The genus Deutereulophus Schulz, 1906 (Hymenoptera: Eulophidae: Eulophinae) with description of three new species from Indonesia LC-MS profiling reveals metabolic dynamics in Apis mellifera worker bee larvae–pupae transition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1