Jiaming Liu , Dong Quan , Jiaying Pan , Xuemin Wang , Xi Yang , Guoqun Zhao
{"title":"High-efficiency ultrasonic welding of CF/epoxy joints with enhanced strength upon tailoring the energy director structure","authors":"Jiaming Liu , Dong Quan , Jiaying Pan , Xuemin Wang , Xi Yang , Guoqun Zhao","doi":"10.1016/j.compositesa.2025.108799","DOIUrl":null,"url":null,"abstract":"<div><div>Encouraging advancement in the ultrasonic welding of thermoset composites (TSCs) was recently achieved by co-curing weldable thermoplastic coupling layers (CLs) onto their surfaces. However, obvious temperature inhomogeneity at the welding interface easily leads to thermally decomposition of epoxy matrix and irreparable defects in the welds. This study proposed a strategy for producing high-quality ultrasonically-welded TSC joints by utilizing novel-structured thermoplastic meshes as energy directors (EDs). Compared to prevalent film EDs, the usage of mesh EDs significantly promoted the heat generation efficiency and temperature distribution uniformity at welding interfaces. The maximum temperature of TSCs reached during welding processes decreased from 373.7 °C to 216.7 °C with reduced welding time by 32.4 %. These phenomena effectively prevented thermally decomposed epoxy matrix, and resulted in high-quality welding lines with remarkable lap-shear strength, i.e. reaching a maximum value of 31.1 MPa. Overall, this study presents a promising strategy for developing robust TSC joints by tailoring ED structures.</div></div>","PeriodicalId":282,"journal":{"name":"Composites Part A: Applied Science and Manufacturing","volume":"192 ","pages":"Article 108799"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composites Part A: Applied Science and Manufacturing","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359835X25000934","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Encouraging advancement in the ultrasonic welding of thermoset composites (TSCs) was recently achieved by co-curing weldable thermoplastic coupling layers (CLs) onto their surfaces. However, obvious temperature inhomogeneity at the welding interface easily leads to thermally decomposition of epoxy matrix and irreparable defects in the welds. This study proposed a strategy for producing high-quality ultrasonically-welded TSC joints by utilizing novel-structured thermoplastic meshes as energy directors (EDs). Compared to prevalent film EDs, the usage of mesh EDs significantly promoted the heat generation efficiency and temperature distribution uniformity at welding interfaces. The maximum temperature of TSCs reached during welding processes decreased from 373.7 °C to 216.7 °C with reduced welding time by 32.4 %. These phenomena effectively prevented thermally decomposed epoxy matrix, and resulted in high-quality welding lines with remarkable lap-shear strength, i.e. reaching a maximum value of 31.1 MPa. Overall, this study presents a promising strategy for developing robust TSC joints by tailoring ED structures.
期刊介绍:
Composites Part A: Applied Science and Manufacturing is a comprehensive journal that publishes original research papers, review articles, case studies, short communications, and letters covering various aspects of composite materials science and technology. This includes fibrous and particulate reinforcements in polymeric, metallic, and ceramic matrices, as well as 'natural' composites like wood and biological materials. The journal addresses topics such as properties, design, and manufacture of reinforcing fibers and particles, novel architectures and concepts, multifunctional composites, advancements in fabrication and processing, manufacturing science, process modeling, experimental mechanics, microstructural characterization, interfaces, prediction and measurement of mechanical, physical, and chemical behavior, and performance in service. Additionally, articles on economic and commercial aspects, design, and case studies are welcomed. All submissions undergo rigorous peer review to ensure they contribute significantly and innovatively, maintaining high standards for content and presentation. The editorial team aims to expedite the review process for prompt publication.