María Paula Alvarez , Laura Marisa Bellis , Julieta Rocío Arcamone , Luna Emilce Silvetti , Gregorio Gavier-Pizarro
{"title":"Ecological condition indicators for dry forest: Forest structure variables estimation with NDVI texture metrics and SAR variables","authors":"María Paula Alvarez , Laura Marisa Bellis , Julieta Rocío Arcamone , Luna Emilce Silvetti , Gregorio Gavier-Pizarro","doi":"10.1016/j.rsase.2025.101485","DOIUrl":null,"url":null,"abstract":"<div><div>The ecological condition of forest ecosystems is degraded. Limited prior research in vegetation has focused on monitoring ecological condition levels in dry forest at fine scale. We proposed a novel approach to obtain accurate indicators of the ecological condition of the Chaco Serrano forest (Córdoba, Argentina) by estimating forest structure variables (canopy cover (<span><math><mrow><mi>C</mi><mi>C</mi></mrow></math></span>), diameter breast height (<span><math><mrow><mi>D</mi><mi>B</mi><mi>H</mi><mtext>_</mtext><mi>s</mi><mi>u</mi><mi>m</mi></mrow></math></span>), number of woody individuals (<span><math><mrow><mi>N</mi><mi>W</mi></mrow></math></span>) and two first axes of a principal component analysis (<span><math><mrow><mi>P</mi><mi>C</mi><mn>1</mn></mrow></math></span> and <span><math><mrow><mi>P</mi><mi>C</mi><mn>2</mn></mrow></math></span>)) as a measure of forest degradation. To achieve this, first the correlation with two complementary groups of remote sensing derived data (texture metrics over Normalised difference vegetation index and SAR-derived data) was explored. Then, General linear models (GLM) were constructed using the most correlated remote sensing derived variables with forest structure variables as predictor variables. The best estimation was obtained to <span><math><mrow><mi>C</mi><mi>C</mi></mrow></math></span> (<span><math><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>=0.58, rmse=14,5%), followed by <span><math><mrow><mi>D</mi><mi>B</mi><msub><mrow><mi>H</mi></mrow><mrow><mi>s</mi><mi>u</mi><mi>m</mi></mrow></msub></mrow></math></span> (<span><math><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>=0.37, rmse=156.6) and <span><math><mrow><mi>N</mi><mi>W</mi></mrow></math></span> (<span><math><msup><mrow><mi>r</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>=0.22, rmse=14.6), with an spatial arrangement consistent with field observations. Moreover, <span><math><mrow><mi>C</mi><mi>C</mi></mrow></math></span> estimation was more accurate than those at regional and global scale, and highlights the importance of developing local models in areas that exhibit high ecological, geological, and human heterogeneity. In addition, other forest variables could also be evaluated, like floristic composition or others associated with functioning. Results offer valuable insights for developing management strategies suitable for each condition, and for future studies regarding the relationship of the mentioned condition and associated natural and anthropic factors.</div></div>","PeriodicalId":53227,"journal":{"name":"Remote Sensing Applications-Society and Environment","volume":"37 ","pages":"Article 101485"},"PeriodicalIF":3.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing Applications-Society and Environment","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352938525000382","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The ecological condition of forest ecosystems is degraded. Limited prior research in vegetation has focused on monitoring ecological condition levels in dry forest at fine scale. We proposed a novel approach to obtain accurate indicators of the ecological condition of the Chaco Serrano forest (Córdoba, Argentina) by estimating forest structure variables (canopy cover (), diameter breast height (), number of woody individuals () and two first axes of a principal component analysis ( and )) as a measure of forest degradation. To achieve this, first the correlation with two complementary groups of remote sensing derived data (texture metrics over Normalised difference vegetation index and SAR-derived data) was explored. Then, General linear models (GLM) were constructed using the most correlated remote sensing derived variables with forest structure variables as predictor variables. The best estimation was obtained to (=0.58, rmse=14,5%), followed by (=0.37, rmse=156.6) and (=0.22, rmse=14.6), with an spatial arrangement consistent with field observations. Moreover, estimation was more accurate than those at regional and global scale, and highlights the importance of developing local models in areas that exhibit high ecological, geological, and human heterogeneity. In addition, other forest variables could also be evaluated, like floristic composition or others associated with functioning. Results offer valuable insights for developing management strategies suitable for each condition, and for future studies regarding the relationship of the mentioned condition and associated natural and anthropic factors.
期刊介绍:
The journal ''Remote Sensing Applications: Society and Environment'' (RSASE) focuses on remote sensing studies that address specific topics with an emphasis on environmental and societal issues - regional / local studies with global significance. Subjects are encouraged to have an interdisciplinary approach and include, but are not limited by: " -Global and climate change studies addressing the impact of increasing concentrations of greenhouse gases, CO2 emission, carbon balance and carbon mitigation, energy system on social and environmental systems -Ecological and environmental issues including biodiversity, ecosystem dynamics, land degradation, atmospheric and water pollution, urban footprint, ecosystem management and natural hazards (e.g. earthquakes, typhoons, floods, landslides) -Natural resource studies including land-use in general, biomass estimation, forests, agricultural land, plantation, soils, coral reefs, wetland and water resources -Agriculture, food production systems and food security outcomes -Socio-economic issues including urban systems, urban growth, public health, epidemics, land-use transition and land use conflicts -Oceanography and coastal zone studies, including sea level rise projections, coastlines changes and the ocean-land interface -Regional challenges for remote sensing application techniques, monitoring and analysis, such as cloud screening and atmospheric correction for tropical regions -Interdisciplinary studies combining remote sensing, household survey data, field measurements and models to address environmental, societal and sustainability issues -Quantitative and qualitative analysis that documents the impact of using remote sensing studies in social, political, environmental or economic systems