Andreas Kartakoullis , Nicola Caporaso , Martin B. Whitworth , Ian D. Fisk
{"title":"Gaussian mixture model clustering allows accurate semantic image segmentation of wheat kernels from near-infrared hyperspectral images","authors":"Andreas Kartakoullis , Nicola Caporaso , Martin B. Whitworth , Ian D. Fisk","doi":"10.1016/j.chemolab.2025.105341","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, an ad-hoc image processing pipeline has been developed and proposed for the purpose of semantically segmenting wheat kernel data acquired through near-infrared hyperspectral imaging (HSI). The Gaussian Mixture Model (GMM), characterized as a soft clustering method, has been employed for this task, yielding noteworthy results in both kernel and germ segmentation. A comparative analysis was conducted, wherein GMM was compared with two hard clustering methods, hierarchical clustering and k-means, as well as other common clustering algorithms prevalent in food HSI applications. Notably, GMM exhibited the highest accuracy, with a Jaccard index of 0.745, surpassing hierarchical clustering at 0.698 and k-means at 0.652. Furthermore, the spectral variations observed in wheat kernel topology can be used for semantic image segmentation, especially in the context of selecting the germ portion within the wheat kernels. These findings carry practical significance for professionals in the fields of hyperspectral imaging (HSI) and machine vision, particularly for food product quality assessment and real-time inspection.</div></div>","PeriodicalId":9774,"journal":{"name":"Chemometrics and Intelligent Laboratory Systems","volume":"259 ","pages":"Article 105341"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemometrics and Intelligent Laboratory Systems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0169743925000267","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, an ad-hoc image processing pipeline has been developed and proposed for the purpose of semantically segmenting wheat kernel data acquired through near-infrared hyperspectral imaging (HSI). The Gaussian Mixture Model (GMM), characterized as a soft clustering method, has been employed for this task, yielding noteworthy results in both kernel and germ segmentation. A comparative analysis was conducted, wherein GMM was compared with two hard clustering methods, hierarchical clustering and k-means, as well as other common clustering algorithms prevalent in food HSI applications. Notably, GMM exhibited the highest accuracy, with a Jaccard index of 0.745, surpassing hierarchical clustering at 0.698 and k-means at 0.652. Furthermore, the spectral variations observed in wheat kernel topology can be used for semantic image segmentation, especially in the context of selecting the germ portion within the wheat kernels. These findings carry practical significance for professionals in the fields of hyperspectral imaging (HSI) and machine vision, particularly for food product quality assessment and real-time inspection.
期刊介绍:
Chemometrics and Intelligent Laboratory Systems publishes original research papers, short communications, reviews, tutorials and Original Software Publications reporting on development of novel statistical, mathematical, or computer techniques in Chemistry and related disciplines.
Chemometrics is the chemical discipline that uses mathematical and statistical methods to design or select optimal procedures and experiments, and to provide maximum chemical information by analysing chemical data.
The journal deals with the following topics:
1) Development of new statistical, mathematical and chemometrical methods for Chemistry and related fields (Environmental Chemistry, Biochemistry, Toxicology, System Biology, -Omics, etc.)
2) Novel applications of chemometrics to all branches of Chemistry and related fields (typical domains of interest are: process data analysis, experimental design, data mining, signal processing, supervised modelling, decision making, robust statistics, mixture analysis, multivariate calibration etc.) Routine applications of established chemometrical techniques will not be considered.
3) Development of new software that provides novel tools or truly advances the use of chemometrical methods.
4) Well characterized data sets to test performance for the new methods and software.
The journal complies with International Committee of Medical Journal Editors'' Uniform requirements for manuscripts.