Optimization of soil hydraulic parameters within a constrained sampling space

IF 5.6 1区 农林科学 Q1 SOIL SCIENCE Geoderma Pub Date : 2025-02-16 DOI:10.1016/j.geoderma.2025.117210
Meijun Li , Wei Shao , Wenjun Yu , Ye Su , Qinghai Song , Yiping Zhang , Hongkai Gao , Yonggen Zhang , Jianzhi Dong
{"title":"Optimization of soil hydraulic parameters within a constrained sampling space","authors":"Meijun Li ,&nbsp;Wei Shao ,&nbsp;Wenjun Yu ,&nbsp;Ye Su ,&nbsp;Qinghai Song ,&nbsp;Yiping Zhang ,&nbsp;Hongkai Gao ,&nbsp;Yonggen Zhang ,&nbsp;Jianzhi Dong","doi":"10.1016/j.geoderma.2025.117210","DOIUrl":null,"url":null,"abstract":"<div><div>The direct optimization of soil hydraulic parameters (SHP) in unconstrained parameter space introduces significant uncertainties in ecohydrological modeling, particularly when addressing the complex model structure of Richards’ equation combined with Penman-Monteith equation. Pedotransfer functions (e.g., the latest version of Rosetta 3), which have been extensively trained using abundant soil hydraulic data, could potentially provide a physical constraint for sampling SHP. This study integrates optimization algorithms (Particle Swarm Optimization, PSO; Markov Chain Monte Carlo, MCMC; Sequential Monte Carlo, SMC; Generalized Likelihood Uncertainty Estimation, GLUE) with two sampling strategies − direct optimization of SHP and indirect optimization of SHP derived from soil particle composition (SPC) using Rosetta 3 − to evaluate their performance in ecohydrological modeling under predefined soil conditions. The results demonstrated that indirect optimization of SHP significantly enhances the accuracy in recovering predefined true parameters and states, and reduces the uncertainty of ecohydrological modeling compared to direct optimization of SHP. Specifically, the mean quartile deviation of biases in soil water content and evaporation were reduced from 0.0347 m<sup>3</sup>/m<sup>3</sup> and 0.0027 m/h to 0.0061 m<sup>3</sup>/m<sup>3</sup> and 0.0010 m/h, respectively. Furthermore, integration of the Rosetta 3 diminished the dimensionality of inverse modeling, thereby significantly enhancing algorithm convergence speed and precision. It is recommended to integrate Rosetta 3 with various optimization algorithms to enhance the accuracy of ecohydrological modeling.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":"455 ","pages":"Article 117210"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016706125000485","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The direct optimization of soil hydraulic parameters (SHP) in unconstrained parameter space introduces significant uncertainties in ecohydrological modeling, particularly when addressing the complex model structure of Richards’ equation combined with Penman-Monteith equation. Pedotransfer functions (e.g., the latest version of Rosetta 3), which have been extensively trained using abundant soil hydraulic data, could potentially provide a physical constraint for sampling SHP. This study integrates optimization algorithms (Particle Swarm Optimization, PSO; Markov Chain Monte Carlo, MCMC; Sequential Monte Carlo, SMC; Generalized Likelihood Uncertainty Estimation, GLUE) with two sampling strategies − direct optimization of SHP and indirect optimization of SHP derived from soil particle composition (SPC) using Rosetta 3 − to evaluate their performance in ecohydrological modeling under predefined soil conditions. The results demonstrated that indirect optimization of SHP significantly enhances the accuracy in recovering predefined true parameters and states, and reduces the uncertainty of ecohydrological modeling compared to direct optimization of SHP. Specifically, the mean quartile deviation of biases in soil water content and evaporation were reduced from 0.0347 m3/m3 and 0.0027 m/h to 0.0061 m3/m3 and 0.0010 m/h, respectively. Furthermore, integration of the Rosetta 3 diminished the dimensionality of inverse modeling, thereby significantly enhancing algorithm convergence speed and precision. It is recommended to integrate Rosetta 3 with various optimization algorithms to enhance the accuracy of ecohydrological modeling.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geoderma
Geoderma 农林科学-土壤科学
CiteScore
11.80
自引率
6.60%
发文量
597
审稿时长
58 days
期刊介绍: Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.
期刊最新文献
Reevaluating multi-pool first-order kinetic models for fitting soil incubation data Digital mapping of peat thickness and extent in Finland using remote sensing and machine learning Edaphic and climatic effects on soil water dynamics and infiltration patterns in tropical rainforests Integrated soil health management influences soil properties: Insights from a US Midwest study Optimization of soil hydraulic parameters within a constrained sampling space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1