Deep learning of the particulate and mineral-associated organic carbon fractions using a compositional transform and mid-infrared spectroscopy

IF 5.6 1区 农林科学 Q1 SOIL SCIENCE Geoderma Pub Date : 2025-02-16 DOI:10.1016/j.geoderma.2025.117207
Mingxi Zhang , Zefang Shen , Lewis Walden , Farid Sepanta , Zhongkui Luo , Lei Gao , Oscar Serrano , Raphael A. Viscarra Rossel
{"title":"Deep learning of the particulate and mineral-associated organic carbon fractions using a compositional transform and mid-infrared spectroscopy","authors":"Mingxi Zhang ,&nbsp;Zefang Shen ,&nbsp;Lewis Walden ,&nbsp;Farid Sepanta ,&nbsp;Zhongkui Luo ,&nbsp;Lei Gao ,&nbsp;Oscar Serrano ,&nbsp;Raphael A. Viscarra Rossel","doi":"10.1016/j.geoderma.2025.117207","DOIUrl":null,"url":null,"abstract":"<div><div>We need soil organic carbon (SOC) and the SOC fractions, the particulate and mineral-associated organic carbon (POC, MAOC), to understand SOC dynamics. They have implications for soil management, carbon sequestration and climate change mitigation. However, conventional laboratory measurements of the SOC fractions, which involve physical or chemical separations, are elaborate, time-consuming and expensive. Mid-infrared (MIR) spectroscopy combined with multivariate modelling can alleviate these limitations because the method can estimate SOC and its fractions rapidly, cost-effectively and accurately. Previous spectroscopic modelling has mostly ignored the compositional nature of the SOC fractions (i.e. SOC = <span><math><mo>∑</mo></math></span>fractions), causing discrepancies in the estimation such that the sum of the fractions does not equal the total SOC. We recorded the MIR spectra (4000–450 cm<sup>−1</sup>) of 397 soil samples from across Australia and then performed a granulometric fractionation to derive three SOC fractions, the POC in the macroaggregates (250–<span><math><mrow><mn>2000</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>, POC<span><math><msub><mrow></mrow><mrow><mi>m</mi><mi>a</mi><mi>c</mi></mrow></msub></math></span>), POC in the micro-aggregates (50–<span><math><mrow><mn>250</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>, POC<span><math><msub><mrow></mrow><mrow><mi>m</mi><mi>i</mi><mi>c</mi></mrow></msub></math></span>), and MAOC (<span><math><mrow><mo>&lt;</mo><mn>50</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>). We used the centred log ratio (CLR) method to transform the data compositionally and then modelled POC<span><math><msub><mrow></mrow><mrow><mi>m</mi><mi>a</mi><mi>c</mi></mrow></msub></math></span>, POC<span><math><msub><mrow></mrow><mrow><mi>m</mi><mi>i</mi><mi>c</mi></mrow></msub></math></span>, POC (POC<span><math><msub><mrow></mrow><mrow><mi>m</mi><mi>a</mi><mi>c</mi></mrow></msub></math></span> + POC<span><math><msub><mrow></mrow><mrow><mi>m</mi><mi>i</mi><mi>c</mi></mrow></msub></math></span>), and MAOC with the spectra, using convolutional neural networks (CNN) and <span>cubist</span> for benchmarking. We interpreted the models using the SHapley Additive exPlanations (SHAP) values and a land use classification of the data. Modelling the CLR-transformed SOC fractions with CNN maintained the composition of the fractions and improved the accuracy of the estimates (Lin’s concordance correlation coefficient (<span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>) of 0.58, 0.86, and 0.94 for the POC<span><math><msub><mrow></mrow><mrow><mi>m</mi><mi>a</mi><mi>c</mi></mrow></msub></math></span>, POC<span><math><msub><mrow></mrow><mrow><mi>m</mi><mi>i</mi><mi>c</mi></mrow></msub></math></span>, and MAOC), compared to CLR with <span>cubist</span> (<span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> of 0.49, 0.84, and 0.87 for the POC<span><math><msub><mrow></mrow><mrow><mi>m</mi><mi>a</mi><mi>c</mi></mrow></msub></math></span>, POC<span><math><msub><mrow></mrow><mrow><mi>m</mi><mi>i</mi><mi>c</mi></mrow></msub></math></span>, and MAOC) and <span>cubist</span> with no compositional transformation (<span><math><msub><mrow><mi>ρ</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> of 0.53, 0.85, and 0.88 for the POC<span><math><msub><mrow></mrow><mrow><mi>m</mi><mi>a</mi><mi>c</mi></mrow></msub></math></span>, POC<span><math><msub><mrow></mrow><mrow><mi>m</mi><mi>i</mi><mi>c</mi></mrow></msub></math></span>, and MAOC). The SHAP values reflected the compositional modelling and identified important organic and inorganic functional groups that differed by fraction and land use. Our approach can complement conventional physical SOC fractionations and improve the cost-effectiveness of the measurements, especially when there are many samples to measure, thus enhancing our understanding of SOC dynamics.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":"455 ","pages":"Article 117207"},"PeriodicalIF":5.6000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001670612500045X","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

We need soil organic carbon (SOC) and the SOC fractions, the particulate and mineral-associated organic carbon (POC, MAOC), to understand SOC dynamics. They have implications for soil management, carbon sequestration and climate change mitigation. However, conventional laboratory measurements of the SOC fractions, which involve physical or chemical separations, are elaborate, time-consuming and expensive. Mid-infrared (MIR) spectroscopy combined with multivariate modelling can alleviate these limitations because the method can estimate SOC and its fractions rapidly, cost-effectively and accurately. Previous spectroscopic modelling has mostly ignored the compositional nature of the SOC fractions (i.e. SOC = fractions), causing discrepancies in the estimation such that the sum of the fractions does not equal the total SOC. We recorded the MIR spectra (4000–450 cm−1) of 397 soil samples from across Australia and then performed a granulometric fractionation to derive three SOC fractions, the POC in the macroaggregates (250–2000μm, POCmac), POC in the micro-aggregates (50–250μm, POCmic), and MAOC (<50μm). We used the centred log ratio (CLR) method to transform the data compositionally and then modelled POCmac, POCmic, POC (POCmac + POCmic), and MAOC with the spectra, using convolutional neural networks (CNN) and cubist for benchmarking. We interpreted the models using the SHapley Additive exPlanations (SHAP) values and a land use classification of the data. Modelling the CLR-transformed SOC fractions with CNN maintained the composition of the fractions and improved the accuracy of the estimates (Lin’s concordance correlation coefficient (ρc) of 0.58, 0.86, and 0.94 for the POCmac, POCmic, and MAOC), compared to CLR with cubist (ρc of 0.49, 0.84, and 0.87 for the POCmac, POCmic, and MAOC) and cubist with no compositional transformation (ρc of 0.53, 0.85, and 0.88 for the POCmac, POCmic, and MAOC). The SHAP values reflected the compositional modelling and identified important organic and inorganic functional groups that differed by fraction and land use. Our approach can complement conventional physical SOC fractionations and improve the cost-effectiveness of the measurements, especially when there are many samples to measure, thus enhancing our understanding of SOC dynamics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geoderma
Geoderma 农林科学-土壤科学
CiteScore
11.80
自引率
6.60%
发文量
597
审稿时长
58 days
期刊介绍: Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.
期刊最新文献
Reevaluating multi-pool first-order kinetic models for fitting soil incubation data Digital mapping of peat thickness and extent in Finland using remote sensing and machine learning Edaphic and climatic effects on soil water dynamics and infiltration patterns in tropical rainforests Integrated soil health management influences soil properties: Insights from a US Midwest study Optimization of soil hydraulic parameters within a constrained sampling space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1