Antoine Breteau , Emmanuel Bozonnet , Patrick Salagnac , Jean-Marie Caous
{"title":"Specific metrics for direct adiabatic cooling of industrial buildings and climate adaptation","authors":"Antoine Breteau , Emmanuel Bozonnet , Patrick Salagnac , Jean-Marie Caous","doi":"10.1016/j.enbuild.2025.115472","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an analysis of the performance of a direct evaporative cooling system incorporated into an industrial building, evaluated in various climates and weather conditions. This system is a simple and economical cooling solution widely used in industrial buildings that combines ventilation and water evaporation cooling. We characterized the system operation through the development of a coupled numerical model of the system and a typical industrial building, in a Mediterranean climate, in the mid-term horizon of 2050. A comparison without any system showed a 74 % reduction in degree-hours of thermal discomfort. Analysis of the building operation shows a predominance of nighttime free cooling, while the adiabatic operates during the occupancy hours. We compared the performance in four different locations, taking into account future weather and heatwaves. The system performed better in hot and dry climates if we consider only the thermal discomfort based on degree-hours, with a 48 % reduction in Abu Dhabi, compared to 41 % in Singapore. However, we observed very different tendencies with water consumption and cooling efficiency: with a cooling efficiency ratio to water use of 22.46 °Ch/m<sup>3</sup> in the equatorial climate, which is almost double that obtained in the dry and arid climate. Arid climates were the most appropriate in terms of energy consumption. In Abu Dhabi, the performance (0.24 °Ch/kWh) was 13 % higher than in an equatorial climate such as Singapore. The results also show that the system performs better under future weather conditions for all the locations studied. Under future conditions, the cooling gain per unit of water consumed rose to 1.48 °Ch/m<sup>3</sup>, while the thermal escalation factor decreased by 0.054 points. These results highlight the ability of the system to effectively reduce thermal discomfort, while revealing trade-offs between thermal efficiency, energy consumption and use of water resources. This analysis underlines the relevance of the system to current and future climate challenges.</div></div>","PeriodicalId":11641,"journal":{"name":"Energy and Buildings","volume":"332 ","pages":"Article 115472"},"PeriodicalIF":6.6000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy and Buildings","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378778825002026","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an analysis of the performance of a direct evaporative cooling system incorporated into an industrial building, evaluated in various climates and weather conditions. This system is a simple and economical cooling solution widely used in industrial buildings that combines ventilation and water evaporation cooling. We characterized the system operation through the development of a coupled numerical model of the system and a typical industrial building, in a Mediterranean climate, in the mid-term horizon of 2050. A comparison without any system showed a 74 % reduction in degree-hours of thermal discomfort. Analysis of the building operation shows a predominance of nighttime free cooling, while the adiabatic operates during the occupancy hours. We compared the performance in four different locations, taking into account future weather and heatwaves. The system performed better in hot and dry climates if we consider only the thermal discomfort based on degree-hours, with a 48 % reduction in Abu Dhabi, compared to 41 % in Singapore. However, we observed very different tendencies with water consumption and cooling efficiency: with a cooling efficiency ratio to water use of 22.46 °Ch/m3 in the equatorial climate, which is almost double that obtained in the dry and arid climate. Arid climates were the most appropriate in terms of energy consumption. In Abu Dhabi, the performance (0.24 °Ch/kWh) was 13 % higher than in an equatorial climate such as Singapore. The results also show that the system performs better under future weather conditions for all the locations studied. Under future conditions, the cooling gain per unit of water consumed rose to 1.48 °Ch/m3, while the thermal escalation factor decreased by 0.054 points. These results highlight the ability of the system to effectively reduce thermal discomfort, while revealing trade-offs between thermal efficiency, energy consumption and use of water resources. This analysis underlines the relevance of the system to current and future climate challenges.
期刊介绍:
An international journal devoted to investigations of energy use and efficiency in buildings
Energy and Buildings is an international journal publishing articles with explicit links to energy use in buildings. The aim is to present new research results, and new proven practice aimed at reducing the energy needs of a building and improving indoor environment quality.