Development and validation of a framework to predict the linear stability of transverse thermoacoustic modes of a reheat combustor

IF 6.2 2区 工程技术 Q2 ENERGY & FUELS Combustion and Flame Pub Date : 2025-02-16 DOI:10.1016/j.combustflame.2025.114010
Simon M. Heinzmann , Harish S. Gopalakrishnan , Francesco Gant , Mirko R. Bothien
{"title":"Development and validation of a framework to predict the linear stability of transverse thermoacoustic modes of a reheat combustor","authors":"Simon M. Heinzmann ,&nbsp;Harish S. Gopalakrishnan ,&nbsp;Francesco Gant ,&nbsp;Mirko R. Bothien","doi":"10.1016/j.combustflame.2025.114010","DOIUrl":null,"url":null,"abstract":"<div><div>To achieve fully carbon-neutral, fuel-flexible and on-demand grid power delivery, gas turbines featuring constant pressure sequential combustion architecture show great potential. A sequential combustor is comprised of two axially-staged combustion chambers with the first stage typically being a swirl-stabilised propagating flame. Post first stage combustion, the exhaust stream is first diluted with air and later enriched with additional fuel in the second stage resulting in a vitiated product mixture at high temperatures leading to auto-ignition. Thermoacoustically-stable combustion stages are critical to ensure low emissions, high reliability and ensure mechanical integrity. The second stage firing under auto-ignition conditions can be subject to transversal instabilities. This article presents a finite element coupled method to model the thermoacoustic behaviour of a second stage reheat flame in an efficient, cost-effective approach. To do so, prior techniques to model the response of autoignition-stabilised flames to longitudinal acoustic perturbations is leveraged to quantify the auto-ignition flame’s heat release rate response to transverse acoustic waves. Subsequently, the framework is used to compute the stability of transverse eigenmodes for an atmospheric reheat combustor. Validation is performed by comparison to experimentally obtained pressure sensor measurements and chemiluminescence imaging of the flame. It is observed that the framework can correctly predict the combustor’s unstable first transverse mode and also capture the dynamic flame response qualitatively. Consequently, the framework presented in this work can be leveraged to get reliable and time-efficient stability estimates of the transverse thermoacoustic modes in experimental reheat burners.</div></div>","PeriodicalId":280,"journal":{"name":"Combustion and Flame","volume":"275 ","pages":"Article 114010"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combustion and Flame","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010218025000483","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

To achieve fully carbon-neutral, fuel-flexible and on-demand grid power delivery, gas turbines featuring constant pressure sequential combustion architecture show great potential. A sequential combustor is comprised of two axially-staged combustion chambers with the first stage typically being a swirl-stabilised propagating flame. Post first stage combustion, the exhaust stream is first diluted with air and later enriched with additional fuel in the second stage resulting in a vitiated product mixture at high temperatures leading to auto-ignition. Thermoacoustically-stable combustion stages are critical to ensure low emissions, high reliability and ensure mechanical integrity. The second stage firing under auto-ignition conditions can be subject to transversal instabilities. This article presents a finite element coupled method to model the thermoacoustic behaviour of a second stage reheat flame in an efficient, cost-effective approach. To do so, prior techniques to model the response of autoignition-stabilised flames to longitudinal acoustic perturbations is leveraged to quantify the auto-ignition flame’s heat release rate response to transverse acoustic waves. Subsequently, the framework is used to compute the stability of transverse eigenmodes for an atmospheric reheat combustor. Validation is performed by comparison to experimentally obtained pressure sensor measurements and chemiluminescence imaging of the flame. It is observed that the framework can correctly predict the combustor’s unstable first transverse mode and also capture the dynamic flame response qualitatively. Consequently, the framework presented in this work can be leveraged to get reliable and time-efficient stability estimates of the transverse thermoacoustic modes in experimental reheat burners.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
再热燃烧室横向热声模态线性稳定性预测框架的开发与验证
为了实现完全的碳中和、燃料灵活和按需电网供电,燃气轮机具有恒压顺序燃烧结构,显示出巨大的潜力。顺序燃烧室由两个轴向级燃烧室组成,第一级通常是涡流稳定的传播火焰。在第一阶段燃烧后,废气流首先被空气稀释,然后在第二阶段被额外的燃料富集,从而在高温下产生变质的产品混合物,从而导致自燃。热声稳定的燃烧阶段对于确保低排放、高可靠性和确保机械完整性至关重要。在自燃条件下的第二级点火会受到横向不稳定性的影响。本文提出了一种有限元耦合方法来模拟二级再加热火焰的热声行为,这是一种高效、经济的方法。为了做到这一点,利用先前的技术来模拟自燃稳定火焰对纵向声波扰动的响应,以量化自燃火焰对横向声波的热释放率响应。随后,利用该框架计算了某常压再热燃烧室横向特征模态的稳定性。通过与实验获得的压力传感器测量值和火焰的化学发光成像进行比较来验证。结果表明,该框架能准确地预测燃烧室的不稳定第一横模,并能定性地捕捉火焰的动态响应。因此,在这项工作中提出的框架可以用来获得实验再热燃烧器中横向热声模式的可靠和时间有效的稳定性估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Combustion and Flame
Combustion and Flame 工程技术-工程:化工
CiteScore
9.50
自引率
20.50%
发文量
631
审稿时长
3.8 months
期刊介绍: The mission of the journal is to publish high quality work from experimental, theoretical, and computational investigations on the fundamentals of combustion phenomena and closely allied matters. While submissions in all pertinent areas are welcomed, past and recent focus of the journal has been on: Development and validation of reaction kinetics, reduction of reaction mechanisms and modeling of combustion systems, including: Conventional, alternative and surrogate fuels; Pollutants; Particulate and aerosol formation and abatement; Heterogeneous processes. Experimental, theoretical, and computational studies of laminar and turbulent combustion phenomena, including: Premixed and non-premixed flames; Ignition and extinction phenomena; Flame propagation; Flame structure; Instabilities and swirl; Flame spread; Multi-phase reactants. Advances in diagnostic and computational methods in combustion, including: Measurement and simulation of scalar and vector properties; Novel techniques; State-of-the art applications. Fundamental investigations of combustion technologies and systems, including: Internal combustion engines; Gas turbines; Small- and large-scale stationary combustion and power generation; Catalytic combustion; Combustion synthesis; Combustion under extreme conditions; New concepts.
期刊最新文献
Ignition temperature and combustion dynamics of B-HTPB composite microparticles Simulation-based study of nitrogen sources and reaction pathways for NO formation in a 10-kW ammonia co-combustion furnace Modelling turbulent multi-regime combustion in LES with filtered tabulated chemistry The effects of friction and heat loss on two-dimensional H2–O2–Ar detonations in thin channels Flame initiated by a heated wall: A new mode of propagation in mixtures below the flammability limit
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1