{"title":"Enhanced catalytic performance of MoO3/MoS2-rGO counter electrode towards a Pt-free dye sensitized solar cell","authors":"Vibavakumar Sivakumar , Nisha Dharmajan , Archana Jayaram , Navaneethan Mani , Harish Santhana Krishnan","doi":"10.1016/j.solmat.2025.113496","DOIUrl":null,"url":null,"abstract":"<div><div>The redox process at the electrolyte/counter electrode (CE) interface is a crucial step in achieving efficient charge flow cycles in DSSCs. The work focuses on enhancing the charge kinetics between the electrolyte, and MoO<sub>3</sub> CE using MoS<sub>2</sub>-reduced graphene oxide (rGO) composites. Different weight percentages of rGO (5 wt%, 10 wt%, and 15 wt%) are composited with MoS<sub>2</sub>. The MoO<sub>3</sub> surface is modified by screen-printing MoS<sub>2</sub>, and MoS<sub>2</sub>-rGO on it. The dense network of MoS<sub>2</sub>, and rGO at the optimized concentration furnishes Pt-like electrocatalytic activity to MoO<sub>3</sub>. The 10 wt% of rGO in MoS<sub>2</sub> (M/MSG10) imparts favourable properties to MoO<sub>3</sub> CE by lowering the charge transfer resistance by 2.6-fold and enhancing the electrocatalytic performance. The limiting, and exchange current densities increase by 2.2, and 2.9 times, respectively, compared to MoO<sub>3</sub>. M/MSG10 CE exhibits a maximum power conversion efficiency of 5.0 %, which is 2.9 times higher than MoO<sub>3</sub>. This champion device outperforms the conventional Pt CE by recording an efficiency 1.1-fold higher. This study identifies Pt-free CE, specifically MoO<sub>3</sub>/MoS<sub>2</sub>-rGO, as a potential candidate to reduce the cost of DSSCs, and promote commercialization.</div></div>","PeriodicalId":429,"journal":{"name":"Solar Energy Materials and Solar Cells","volume":"285 ","pages":"Article 113496"},"PeriodicalIF":6.3000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solar Energy Materials and Solar Cells","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0927024825000972","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The redox process at the electrolyte/counter electrode (CE) interface is a crucial step in achieving efficient charge flow cycles in DSSCs. The work focuses on enhancing the charge kinetics between the electrolyte, and MoO3 CE using MoS2-reduced graphene oxide (rGO) composites. Different weight percentages of rGO (5 wt%, 10 wt%, and 15 wt%) are composited with MoS2. The MoO3 surface is modified by screen-printing MoS2, and MoS2-rGO on it. The dense network of MoS2, and rGO at the optimized concentration furnishes Pt-like electrocatalytic activity to MoO3. The 10 wt% of rGO in MoS2 (M/MSG10) imparts favourable properties to MoO3 CE by lowering the charge transfer resistance by 2.6-fold and enhancing the electrocatalytic performance. The limiting, and exchange current densities increase by 2.2, and 2.9 times, respectively, compared to MoO3. M/MSG10 CE exhibits a maximum power conversion efficiency of 5.0 %, which is 2.9 times higher than MoO3. This champion device outperforms the conventional Pt CE by recording an efficiency 1.1-fold higher. This study identifies Pt-free CE, specifically MoO3/MoS2-rGO, as a potential candidate to reduce the cost of DSSCs, and promote commercialization.
期刊介绍:
Solar Energy Materials & Solar Cells is intended as a vehicle for the dissemination of research results on materials science and technology related to photovoltaic, photothermal and photoelectrochemical solar energy conversion. Materials science is taken in the broadest possible sense and encompasses physics, chemistry, optics, materials fabrication and analysis for all types of materials.