Mikko S. Venäläinen , Mao Li , Juha Töyräs , Rami K. Korhonen , Jurgen Fripp , Stuart Crozier , Shekhar S. Chandra , Craig Engstrom
{"title":"Hybrid discrete and finite element analysis enables fast evaluation of hip joint cartilage mechanical response","authors":"Mikko S. Venäläinen , Mao Li , Juha Töyräs , Rami K. Korhonen , Jurgen Fripp , Stuart Crozier , Shekhar S. Chandra , Craig Engstrom","doi":"10.1016/j.jbiomech.2025.112568","DOIUrl":null,"url":null,"abstract":"<div><div>Finite element analysis (FEA) is the leading numerical technique for studying joint biomechanics related to the onset and progression of osteoarthritis. However, subject-specific FEA of joint mechanics is a time- and compute-intensive process limiting its clinical applicability. We introduce and evaluate a novel hybrid modelling framework combining discrete element analysis (DEA) and FEA for computationally efficient evaluation of cartilage mechanics in the hip joint. In our approach, the hip joint contact mechanics are first estimated using DEA and subsequently used as input for matching FEA models, substantially reducing model complexity. The cartilage mechanical responses obtained using the hybrid DEA-FEA method were evaluated for subject-specific hip joint geometries from five asymptomatic individuals under loading conditions typical to normal walking gait and compared to conventional FEA in terms of peak intra-tissue mechanical stresses and model run-times. The hybrid DEA-FEA method had a median run-time of 3.6 min per subject (64-core processor, 512 GB RAM) and produced minimum principal (compressive) stress estimates comparable to stresses obtained using conventional FEA models with a median run-time of 96.2 min. On average, the peak compressive stresses obtained using the hybrid DEA-FEA approach were 0.06 MPa (95 % confidence interval: −0.86–0.99) lower than the stresses estimated with conventional FEA. Despite up to 1.4 MPa differences at individual gait time-points, the results indicate that the proposed hybrid DEA-FEA method enables estimation of hip cartilage mechanics in a fraction of time compared to conventional FEA, facilitating implementation in large cohort studies and clinical applications.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"182 ","pages":"Article 112568"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002192902500079X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Finite element analysis (FEA) is the leading numerical technique for studying joint biomechanics related to the onset and progression of osteoarthritis. However, subject-specific FEA of joint mechanics is a time- and compute-intensive process limiting its clinical applicability. We introduce and evaluate a novel hybrid modelling framework combining discrete element analysis (DEA) and FEA for computationally efficient evaluation of cartilage mechanics in the hip joint. In our approach, the hip joint contact mechanics are first estimated using DEA and subsequently used as input for matching FEA models, substantially reducing model complexity. The cartilage mechanical responses obtained using the hybrid DEA-FEA method were evaluated for subject-specific hip joint geometries from five asymptomatic individuals under loading conditions typical to normal walking gait and compared to conventional FEA in terms of peak intra-tissue mechanical stresses and model run-times. The hybrid DEA-FEA method had a median run-time of 3.6 min per subject (64-core processor, 512 GB RAM) and produced minimum principal (compressive) stress estimates comparable to stresses obtained using conventional FEA models with a median run-time of 96.2 min. On average, the peak compressive stresses obtained using the hybrid DEA-FEA approach were 0.06 MPa (95 % confidence interval: −0.86–0.99) lower than the stresses estimated with conventional FEA. Despite up to 1.4 MPa differences at individual gait time-points, the results indicate that the proposed hybrid DEA-FEA method enables estimation of hip cartilage mechanics in a fraction of time compared to conventional FEA, facilitating implementation in large cohort studies and clinical applications.
期刊介绍:
The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership.
Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to:
-Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells.
-Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions.
-Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response.
-Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing.
-Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine.
-Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction.
-Molecular Biomechanics - Mechanical analyses of biomolecules.
-Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints.
-Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics.
-Sports Biomechanics - Mechanical analyses of sports performance.