Thomas Josephy , Markus Heiduk , Tobias Saxl , Katharina Bleher
{"title":"Reversible deprotonation as crucial step in bispidine copper-catalyzed aziridination reaction","authors":"Thomas Josephy , Markus Heiduk , Tobias Saxl , Katharina Bleher","doi":"10.1016/j.ica.2025.122587","DOIUrl":null,"url":null,"abstract":"<div><div>Copper nitrene complexes are highly reactive species and known as active intermediates in copper-catalyzed C-H amination and aziridination. In this study, we investigated the reaction mechanism of a bispidine-based copper complex with a secondary amine in the selective aziridination of styrene using [N-(p-toluenesulfonyl)imino]phenyliodinane as oxidant. It was demonstrated that the addition of Et<sub>3</sub>N to the reaction mixture facilitates a reversible deprotonation throughout the catalytic cycle, contributing to an overall accelerated product formation. Additionally, the use of two pentadentate ligands with secondary amines in combination with two tertiary methyl-amine ligands showed that the positioning of the secondary amine trans to the nitrene group is crucial for observing an increase of the turnover frequency. Furthermore, through the addition of radical quenchers and the investigation of additional substrates, a copper(II) radical nitrene intermediate was postulated, which concludes substrate conversion via a stepwise reaction mechanism.</div></div>","PeriodicalId":13599,"journal":{"name":"Inorganica Chimica Acta","volume":"579 ","pages":"Article 122587"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganica Chimica Acta","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020169325000532","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Copper nitrene complexes are highly reactive species and known as active intermediates in copper-catalyzed C-H amination and aziridination. In this study, we investigated the reaction mechanism of a bispidine-based copper complex with a secondary amine in the selective aziridination of styrene using [N-(p-toluenesulfonyl)imino]phenyliodinane as oxidant. It was demonstrated that the addition of Et3N to the reaction mixture facilitates a reversible deprotonation throughout the catalytic cycle, contributing to an overall accelerated product formation. Additionally, the use of two pentadentate ligands with secondary amines in combination with two tertiary methyl-amine ligands showed that the positioning of the secondary amine trans to the nitrene group is crucial for observing an increase of the turnover frequency. Furthermore, through the addition of radical quenchers and the investigation of additional substrates, a copper(II) radical nitrene intermediate was postulated, which concludes substrate conversion via a stepwise reaction mechanism.
期刊介绍:
Inorganica Chimica Acta is an established international forum for all aspects of advanced Inorganic Chemistry. Original papers of high scientific level and interest are published in the form of Articles and Reviews.
Topics covered include:
• chemistry of the main group elements and the d- and f-block metals, including the synthesis, characterization and reactivity of coordination, organometallic, biomimetic, supramolecular coordination compounds, including associated computational studies;
• synthesis, physico-chemical properties, applications of molecule-based nano-scaled clusters and nanomaterials designed using the principles of coordination chemistry, as well as coordination polymers (CPs), metal-organic frameworks (MOFs), metal-organic polyhedra (MPOs);
• reaction mechanisms and physico-chemical investigations computational studies of metalloenzymes and their models;
• applications of inorganic compounds, metallodrugs and molecule-based materials.
Papers composed primarily of structural reports will typically not be considered for publication.