Xuan Li , Dezhao Liu , Zheng Li , Rui Wang , Xiaoli Li , Tianyi Zhou
{"title":"Spatiospectral dynamics of electroencephalography patterns during propofol-induced alterations of consciousness states","authors":"Xuan Li , Dezhao Liu , Zheng Li , Rui Wang , Xiaoli Li , Tianyi Zhou","doi":"10.1016/j.neuroimage.2025.121084","DOIUrl":null,"url":null,"abstract":"<div><div>Altered consciousness induced by anesthetics is characterized by distinct spatial and spectral neural dynamics that are readily apparent in the human electroencephalogram. Despite considerable study, we remain uncertain which brain regions and neural oscillations are involved, as well as how they are impacted when consciousness is disrupted. The experimental data was obtained from the open-access dataset, which contains pre-processed EEG data recorded from 20 healthy participants during propofol sedation. Using unsupervised machine learning methods (i.e., non-negative matrix factorization, NMF), we investigated the spatiospectral dynamic evolution of brain activity from awake to sedation and back induced by propofol in healthy research volunteers. Our methods yielded six dynamical patterns that continuously reflect the neural activity changes in specific brain regions and frequency bands under propofol sedation. Temporal dynamic analyses showed that differences in alpha oscillation patterns were less pronounced in response group than drowsy group, with hemispheric asymmetry in posterior occipital lobe over the course of the sedation procedure. We designed an index ‘hemispheric lateralization modulation of alpha [HLM(α)]’ to measure asymmetry during awake state and predicting individual variability in propofol-induced alterations of consciousness states, obtaining prediction AUC of 0.8462. We present an alpha modulation index which characterizes how these patterns track the transition from awake to sedation as a function of increasing dosage. Our study reveals dynamics indices that track the evolution of neurophysiological of propofol on brain circuits. Analyzing the spatiospectral dynamics influenced by propofol provides valuable understanding of the mechanisms of these agents and strategies for monitoring and precisely controlling the level of consciousness in patients under sedation and general anesthesia.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"309 ","pages":"Article 121084"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811925000862","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Altered consciousness induced by anesthetics is characterized by distinct spatial and spectral neural dynamics that are readily apparent in the human electroencephalogram. Despite considerable study, we remain uncertain which brain regions and neural oscillations are involved, as well as how they are impacted when consciousness is disrupted. The experimental data was obtained from the open-access dataset, which contains pre-processed EEG data recorded from 20 healthy participants during propofol sedation. Using unsupervised machine learning methods (i.e., non-negative matrix factorization, NMF), we investigated the spatiospectral dynamic evolution of brain activity from awake to sedation and back induced by propofol in healthy research volunteers. Our methods yielded six dynamical patterns that continuously reflect the neural activity changes in specific brain regions and frequency bands under propofol sedation. Temporal dynamic analyses showed that differences in alpha oscillation patterns were less pronounced in response group than drowsy group, with hemispheric asymmetry in posterior occipital lobe over the course of the sedation procedure. We designed an index ‘hemispheric lateralization modulation of alpha [HLM(α)]’ to measure asymmetry during awake state and predicting individual variability in propofol-induced alterations of consciousness states, obtaining prediction AUC of 0.8462. We present an alpha modulation index which characterizes how these patterns track the transition from awake to sedation as a function of increasing dosage. Our study reveals dynamics indices that track the evolution of neurophysiological of propofol on brain circuits. Analyzing the spatiospectral dynamics influenced by propofol provides valuable understanding of the mechanisms of these agents and strategies for monitoring and precisely controlling the level of consciousness in patients under sedation and general anesthesia.
期刊介绍:
NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.