A multimodal embedding transfer approach for consistent and selective learning processes in cross-modal retrieval

IF 8.1 1区 计算机科学 0 COMPUTER SCIENCE, INFORMATION SYSTEMS Information Sciences Pub Date : 2025-02-13 DOI:10.1016/j.ins.2025.121974
Zhixiong Zeng , Shuyi He , Yuhao Zhang , Wenji Mao
{"title":"A multimodal embedding transfer approach for consistent and selective learning processes in cross-modal retrieval","authors":"Zhixiong Zeng ,&nbsp;Shuyi He ,&nbsp;Yuhao Zhang ,&nbsp;Wenji Mao","doi":"10.1016/j.ins.2025.121974","DOIUrl":null,"url":null,"abstract":"<div><div>Cross-modal retrieval (CMR) aims to retrieve semantically relevant samples based on the query of a different modality. Previous work usually employs pair-wise and class-wise learning to learn a shared embedding space, so that modality invariance and semantic discrimination can be preserved. However, pair-wise and class-wise learning are conventionally considered separately in previous methods, which often brings about the inconsistent combination of learning objectives and unselective optimization of multimodal pairs, leading to insufficient/ineffective information utilization that degrades model performance. To tackle these issues, in this paper, we propose a novel multimodal embedding transfer approach to enable consistent and selective learning processes for CMR. To support consistent combination and maximize information utilization, our proposed framework leverages a source embedding model generated by class-wise learning and a target embedding model generated by pair-wise learning. We then develop the embedding transfer strategy to transfer multimodal embeddings from the source model to the target model, which provides the relaxed margins and relaxed labels simultaneously for the selective optimization of multimodal pairs. We finally design a soft contrastive loss to realize the multimodal embedding transfer strategy. Extensive experiments on the benchmark multimodal datasets verify the effectiveness of our approach for cross-modal retrieval.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"704 ","pages":"Article 121974"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025525001069","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Cross-modal retrieval (CMR) aims to retrieve semantically relevant samples based on the query of a different modality. Previous work usually employs pair-wise and class-wise learning to learn a shared embedding space, so that modality invariance and semantic discrimination can be preserved. However, pair-wise and class-wise learning are conventionally considered separately in previous methods, which often brings about the inconsistent combination of learning objectives and unselective optimization of multimodal pairs, leading to insufficient/ineffective information utilization that degrades model performance. To tackle these issues, in this paper, we propose a novel multimodal embedding transfer approach to enable consistent and selective learning processes for CMR. To support consistent combination and maximize information utilization, our proposed framework leverages a source embedding model generated by class-wise learning and a target embedding model generated by pair-wise learning. We then develop the embedding transfer strategy to transfer multimodal embeddings from the source model to the target model, which provides the relaxed margins and relaxed labels simultaneously for the selective optimization of multimodal pairs. We finally design a soft contrastive loss to realize the multimodal embedding transfer strategy. Extensive experiments on the benchmark multimodal datasets verify the effectiveness of our approach for cross-modal retrieval.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Sciences
Information Sciences 工程技术-计算机:信息系统
CiteScore
14.00
自引率
17.30%
发文量
1322
审稿时长
10.4 months
期刊介绍: Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions. Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.
期刊最新文献
Predicting and interpreting healthcare trajectories from irregularly collected sequential patient data using AMITA Data-driven fault-tolerant consensus control for constrained nonlinear multiagent systems via adaptive dynamic programming An intelligent medical recommendation model based on big data-driven estimation of physician ability A multimodal embedding transfer approach for consistent and selective learning processes in cross-modal retrieval Significance-based interpretable sequence clustering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1