TransRAD: Retentive Vision Transformer for Enhanced Radar Object Detection

Lei Cheng;Siyang Cao
{"title":"TransRAD: Retentive Vision Transformer for Enhanced Radar Object Detection","authors":"Lei Cheng;Siyang Cao","doi":"10.1109/TRS.2025.3537604","DOIUrl":null,"url":null,"abstract":"Despite significant advancements in environment perception capabilities for autonomous driving and intelligent robotics, cameras and LiDARs remain notoriously unreliable in low-light conditions and adverse weather, which limits their effectiveness. Radar serves as a reliable and low-cost sensor that can effectively complement these limitations. However, radar-based object detection has been underexplored due to the inherent weaknesses of radar data, such as low resolution, high noise, and lack of visual information. In this article, we present TransRAD, a novel 3-D radar object detection model designed to address these challenges by leveraging the retentive vision transformer (RMT) to more effectively learn features from information-dense radar range-Azimuth–Doppler (RAD) data. Our approach leverages the retentive Manhattan self-attention (MaSA) mechanism provided by RMT to incorporate explicit spatial priors, thereby enabling more accurate alignment with the spatial saliency characteristics of radar targets in RAD data and achieving precise 3-D radar detection across RAD dimensions. Furthermore, we propose location-aware nonmaximum suppression (LA-NMS) to effectively mitigate the common issue of duplicate bounding boxes in deep radar object detection. The experimental results demonstrate that TransRAD outperforms state-of-the-art (SOTA) methods in both 2-D and 3-D radar detection tasks, achieving higher accuracy, faster inference speed, and reduced computational complexity. Code is available at <uri>https://github.com/radar-lab/TransRAD</uri>.","PeriodicalId":100645,"journal":{"name":"IEEE Transactions on Radar Systems","volume":"3 ","pages":"303-317"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Radar Systems","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10869508/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Despite significant advancements in environment perception capabilities for autonomous driving and intelligent robotics, cameras and LiDARs remain notoriously unreliable in low-light conditions and adverse weather, which limits their effectiveness. Radar serves as a reliable and low-cost sensor that can effectively complement these limitations. However, radar-based object detection has been underexplored due to the inherent weaknesses of radar data, such as low resolution, high noise, and lack of visual information. In this article, we present TransRAD, a novel 3-D radar object detection model designed to address these challenges by leveraging the retentive vision transformer (RMT) to more effectively learn features from information-dense radar range-Azimuth–Doppler (RAD) data. Our approach leverages the retentive Manhattan self-attention (MaSA) mechanism provided by RMT to incorporate explicit spatial priors, thereby enabling more accurate alignment with the spatial saliency characteristics of radar targets in RAD data and achieving precise 3-D radar detection across RAD dimensions. Furthermore, we propose location-aware nonmaximum suppression (LA-NMS) to effectively mitigate the common issue of duplicate bounding boxes in deep radar object detection. The experimental results demonstrate that TransRAD outperforms state-of-the-art (SOTA) methods in both 2-D and 3-D radar detection tasks, achieving higher accuracy, faster inference speed, and reduced computational complexity. Code is available at https://github.com/radar-lab/TransRAD.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ClassiGAN: Joint Image Reconstruction and Classification in Computational Microwave Imaging Dual-Channel Joint SAR-Interferometry via Superresolution Spectral Estimation Adaptive LPD Radar Waveform Design With Generative Deep Learning Prototype Features Driven High-Performance Few-Shot Radar Active Jamming Recognition Intelligent Target Detection Method for HFSWR Based on Dual-Scale Branch Fusion Network and Adaptive Threshold Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1