Houman Kholafazad Kordasht, Parinaz Bahavarnia, Farnaz Bahavarnia, Mohammad Hasanzadeh and Nasrin Shadjou
{"title":"Exploring the frontiers of emerging sensing of silver nanoprisms: recent progress and challenges","authors":"Houman Kholafazad Kordasht, Parinaz Bahavarnia, Farnaz Bahavarnia, Mohammad Hasanzadeh and Nasrin Shadjou","doi":"10.1039/D4RA08469A","DOIUrl":null,"url":null,"abstract":"<p >In recent years, the development and use of nanomaterials have transformed numerous aspects of biomedical science. Nanomaterials have played a pivotal role in advancing disease diagnosis and treatment across a wide range of applications. Within this scope, silver nanoprisms (AgNPrs) stand out due to their remarkable properties, such as extensive surface area, chemical robustness, and tunable electrical conductivity, making them excellent candidates for biomedical purposes. By tailoring these nanomaterials through functionalization or coating surface, their multifunctionality can be enhanced, unlocking new opportunities for their application in areas such as diagnosis, imaging, and therapeutic intervention. This review begins with an overview of AgNPrs' synthesis techniques and their unique physicochemical characteristics. Recent advancements in analytical methods utilizing AgNPrs, categorized by sensing mechanisms such as optical and electrochemical approaches, are highlighted in the context of diagnostics. Lastly, the challenges and future prospects of bringing AgNPr-based technologies to commercialization and integrating them into disease diagnostics and medical treatment are explored. The integration of AgNPrs in disease therapy holds promise for the development of advanced chemotherapy agents that effectively address the challenges of efficient cancer treatment looking ahead, the ongoing advancement of nanocarrier systems comprising AgNPrs-based molecules holds great promise for improving the quality of life for patients worldwide.</p>","PeriodicalId":102,"journal":{"name":"RSC Advances","volume":" 7","pages":" 5105-5116"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ra/d4ra08469a?page=search","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RSC Advances","FirstCategoryId":"92","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ra/d4ra08469a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the development and use of nanomaterials have transformed numerous aspects of biomedical science. Nanomaterials have played a pivotal role in advancing disease diagnosis and treatment across a wide range of applications. Within this scope, silver nanoprisms (AgNPrs) stand out due to their remarkable properties, such as extensive surface area, chemical robustness, and tunable electrical conductivity, making them excellent candidates for biomedical purposes. By tailoring these nanomaterials through functionalization or coating surface, their multifunctionality can be enhanced, unlocking new opportunities for their application in areas such as diagnosis, imaging, and therapeutic intervention. This review begins with an overview of AgNPrs' synthesis techniques and their unique physicochemical characteristics. Recent advancements in analytical methods utilizing AgNPrs, categorized by sensing mechanisms such as optical and electrochemical approaches, are highlighted in the context of diagnostics. Lastly, the challenges and future prospects of bringing AgNPr-based technologies to commercialization and integrating them into disease diagnostics and medical treatment are explored. The integration of AgNPrs in disease therapy holds promise for the development of advanced chemotherapy agents that effectively address the challenges of efficient cancer treatment looking ahead, the ongoing advancement of nanocarrier systems comprising AgNPrs-based molecules holds great promise for improving the quality of life for patients worldwide.
期刊介绍:
An international, peer-reviewed journal covering all of the chemical sciences, including multidisciplinary and emerging areas. RSC Advances is a gold open access journal allowing researchers free access to research articles, and offering an affordable open access publishing option for authors around the world.