Exploring the temperature, humidity, and deformation characteristics of gravel replacement foundations in seasonally frozen zones: a model testing study
{"title":"Exploring the temperature, humidity, and deformation characteristics of gravel replacement foundations in seasonally frozen zones: a model testing study","authors":"Zhe Li, Ji Ma, Xiaoyan Liu, Lulu Liu, Guojun Cai, Lixin Peng, Bingfan Chen, Xiaolong Liang, Haibin Xiong","doi":"10.1007/s10064-025-04163-9","DOIUrl":null,"url":null,"abstract":"<div><p>The freeze-thaw cycle poses a significant threat to foundations and roadbeds in seasonally frozen regions. This article conducts model experiments to analyze changes in the temperature field, water migration patterns, and settlement deformation characteristics of sand-gravel replacement foundations during freeze-thaw cycles. The experimental findings indicate that the low-temperature zone primarily exists within the sand-gravel replacement layer at the base of the slope. As the number of freeze-thaw cycles increases, the freezing depth of the sand-gravel replacement layer continues to rise. During the cooling phase, changes in soil volume moisture content result from self-weight and water migration during freezing. With an increase in the number of freeze-thaw cycles, the moisture content of external measurement points on the embankment rises at the end of the freezing period, whereas the moisture content of internal measurement points decreases. At the end of the thawing phase, measurement point 6 experiences an increase in moisture content due to the upward migration of water in the lower soil layer, while other measurement points exhibit reduced moisture content. The foundation’s settlement deformation exhibits a horizontal “tilted” shape, with cumulative settlement amounts and settlement deformation rates determined at various positions. These results suggest that the settlement deformation tends to stabilize one month after the completion of embankment filling construction. The maximum freezing depths at the left and right slope toe positions are 1 m and 1.2 m, respectively. Furthermore, the maximum frost heave at the slope toe position is less than the maximum thawing settlement, illustrating the irreversible soil deformation following freeze-thaw cycles.</p></div>","PeriodicalId":500,"journal":{"name":"Bulletin of Engineering Geology and the Environment","volume":"84 3","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10064-025-04163-9.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Engineering Geology and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10064-025-04163-9","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The freeze-thaw cycle poses a significant threat to foundations and roadbeds in seasonally frozen regions. This article conducts model experiments to analyze changes in the temperature field, water migration patterns, and settlement deformation characteristics of sand-gravel replacement foundations during freeze-thaw cycles. The experimental findings indicate that the low-temperature zone primarily exists within the sand-gravel replacement layer at the base of the slope. As the number of freeze-thaw cycles increases, the freezing depth of the sand-gravel replacement layer continues to rise. During the cooling phase, changes in soil volume moisture content result from self-weight and water migration during freezing. With an increase in the number of freeze-thaw cycles, the moisture content of external measurement points on the embankment rises at the end of the freezing period, whereas the moisture content of internal measurement points decreases. At the end of the thawing phase, measurement point 6 experiences an increase in moisture content due to the upward migration of water in the lower soil layer, while other measurement points exhibit reduced moisture content. The foundation’s settlement deformation exhibits a horizontal “tilted” shape, with cumulative settlement amounts and settlement deformation rates determined at various positions. These results suggest that the settlement deformation tends to stabilize one month after the completion of embankment filling construction. The maximum freezing depths at the left and right slope toe positions are 1 m and 1.2 m, respectively. Furthermore, the maximum frost heave at the slope toe position is less than the maximum thawing settlement, illustrating the irreversible soil deformation following freeze-thaw cycles.
期刊介绍:
Engineering geology is defined in the statutes of the IAEG as the science devoted to the investigation, study and solution of engineering and environmental problems which may arise as the result of the interaction between geology and the works or activities of man, as well as of the prediction of and development of measures for the prevention or remediation of geological hazards. Engineering geology embraces:
• the applications/implications of the geomorphology, structural geology, and hydrogeological conditions of geological formations;
• the characterisation of the mineralogical, physico-geomechanical, chemical and hydraulic properties of all earth materials involved in construction, resource recovery and environmental change;
• the assessment of the mechanical and hydrological behaviour of soil and rock masses;
• the prediction of changes to the above properties with time;
• the determination of the parameters to be considered in the stability analysis of engineering works and earth masses.