Kun Mao, Yanni Wang, Wen Zhou, Jiangang Ye, Bin Fang
{"title":"Evaluation of belief entropies: from the perspective of evidential neural network","authors":"Kun Mao, Yanni Wang, Wen Zhou, Jiangang Ye, Bin Fang","doi":"10.1007/s10462-025-11130-z","DOIUrl":null,"url":null,"abstract":"<div><p>In Dempster-Shafer’s theory, the belief entropy for total uncertainty measure of mass function has attracted the interest of many researchers in recent years. Although various belief entropies can meet some basic requirements, how to judge the performance of belief entropies is still an open issue. This paper proposes a novel evidential neural network (ENN) classifier to evaluate different belief entropies in practical application. Driven by the least commitment principle (LCP), the maximum entropy is integrated into the traditional divergence-based loss function. The proposed loss function consists of divergence and maximum entropy parts, which considers not only the distribution difference but also the degree of approaching the maximum entropy. Some classification experiments are conducted in 7 real-world datasets to validate the effectiveness of the proposed evaluation method.</p></div>","PeriodicalId":8449,"journal":{"name":"Artificial Intelligence Review","volume":"58 5","pages":""},"PeriodicalIF":10.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10462-025-11130-z.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence Review","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10462-025-11130-z","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In Dempster-Shafer’s theory, the belief entropy for total uncertainty measure of mass function has attracted the interest of many researchers in recent years. Although various belief entropies can meet some basic requirements, how to judge the performance of belief entropies is still an open issue. This paper proposes a novel evidential neural network (ENN) classifier to evaluate different belief entropies in practical application. Driven by the least commitment principle (LCP), the maximum entropy is integrated into the traditional divergence-based loss function. The proposed loss function consists of divergence and maximum entropy parts, which considers not only the distribution difference but also the degree of approaching the maximum entropy. Some classification experiments are conducted in 7 real-world datasets to validate the effectiveness of the proposed evaluation method.
期刊介绍:
Artificial Intelligence Review, a fully open access journal, publishes cutting-edge research in artificial intelligence and cognitive science. It features critical evaluations of applications, techniques, and algorithms, providing a platform for both researchers and application developers. The journal includes refereed survey and tutorial articles, along with reviews and commentary on significant developments in the field.