Sol-gel spin coating of ZnO thin films for hydrophobic and radiation resistant applications

IF 2.3 4区 材料科学 Q2 MATERIALS SCIENCE, CERAMICS Journal of Sol-Gel Science and Technology Pub Date : 2024-12-23 DOI:10.1007/s10971-024-06652-x
Venkatesh Yepuri, Saravanan Sigamani, Veluri Swaminadham
{"title":"Sol-gel spin coating of ZnO thin films for hydrophobic and radiation resistant applications","authors":"Venkatesh Yepuri,&nbsp;Saravanan Sigamani,&nbsp;Veluri Swaminadham","doi":"10.1007/s10971-024-06652-x","DOIUrl":null,"url":null,"abstract":"<div><p>There is a significant demand for coatings that can withstand radiation in nearly every region globally, particularly where glass furnishings are utilized. These coatings are capable of reflecting radiation from the solar spectrum while also functioning as self-cleaning surfaces that eliminate pollutants from the glass. Nonetheless, scientists are persistently investigating methods to cost-effectively manufacture these coatings for application across diverse industries. This study focuses on the effective production of Zinc Oxide (ZnO) thin films through sol-gel spin coating techniques, intended for application on glass surfaces. The goal is to enhance these surfaces with UV and IR reflection capabilities, alongside hydrophobic characteristics that repel water and promote a self-cleaning effect. The analysis via X-ray Diffractogram (XRD) demonstrated that the coating exhibited a hexagonal Wurtzite crystal structure of ZnO. The study conducted using Fourier Transform Infrared (FTIR) provided additional confirmation of the presence of Zn and O functional linkages at distinct wavenumbers, specifically 733 cm<sup>−1</sup> and 2896 cm<sup>−1</sup>, respectively. Field emission scanning electron microscopy (FESEM) was employed to analyze the thickness of the ZnO layer. The findings indicated the development of a slender layer measuring around 46 nm in thickness. Elemental analysis utilizing EDAX validated the detection of Zinc and Oxygen, with Zinc representing 32% of the atomic weight percentage and Oxygen comprising 68%. Furthermore, the coatings’ resistance to radiation was evaluated through ultraviolet visible and near-infrared spectroscopy (UV-VIS-NIR). The findings indicated that a mere single layer of Zinc Oxide was capable of reflecting 50% of ultraviolet light and 45% of infrared light. After conducting experiments with a goniometer, it was observed that the ZnO coating (500 °C) demonstrated hydrophobic property when in contact with a water droplet, showing a contact angle of ~120°.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div><div><p>Graphical abstract depicting the fabrication of ZnO thin films and the subsequent analysis of their properties.</p></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"113 3","pages":"708 - 716"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06652-x","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

There is a significant demand for coatings that can withstand radiation in nearly every region globally, particularly where glass furnishings are utilized. These coatings are capable of reflecting radiation from the solar spectrum while also functioning as self-cleaning surfaces that eliminate pollutants from the glass. Nonetheless, scientists are persistently investigating methods to cost-effectively manufacture these coatings for application across diverse industries. This study focuses on the effective production of Zinc Oxide (ZnO) thin films through sol-gel spin coating techniques, intended for application on glass surfaces. The goal is to enhance these surfaces with UV and IR reflection capabilities, alongside hydrophobic characteristics that repel water and promote a self-cleaning effect. The analysis via X-ray Diffractogram (XRD) demonstrated that the coating exhibited a hexagonal Wurtzite crystal structure of ZnO. The study conducted using Fourier Transform Infrared (FTIR) provided additional confirmation of the presence of Zn and O functional linkages at distinct wavenumbers, specifically 733 cm−1 and 2896 cm−1, respectively. Field emission scanning electron microscopy (FESEM) was employed to analyze the thickness of the ZnO layer. The findings indicated the development of a slender layer measuring around 46 nm in thickness. Elemental analysis utilizing EDAX validated the detection of Zinc and Oxygen, with Zinc representing 32% of the atomic weight percentage and Oxygen comprising 68%. Furthermore, the coatings’ resistance to radiation was evaluated through ultraviolet visible and near-infrared spectroscopy (UV-VIS-NIR). The findings indicated that a mere single layer of Zinc Oxide was capable of reflecting 50% of ultraviolet light and 45% of infrared light. After conducting experiments with a goniometer, it was observed that the ZnO coating (500 °C) demonstrated hydrophobic property when in contact with a water droplet, showing a contact angle of ~120°.

Graphical Abstract

Graphical abstract depicting the fabrication of ZnO thin films and the subsequent analysis of their properties.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Sol-Gel Science and Technology
Journal of Sol-Gel Science and Technology 工程技术-材料科学:硅酸盐
CiteScore
4.70
自引率
4.00%
发文量
280
审稿时长
2.1 months
期刊介绍: The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.
期刊最新文献
Density functional theory studies on the reaction mechanism of alumina synthesis with a new sol-gel routine The effect on zirconyl type salt on the phase composition, particle size and sinterability of zirconia based powders obtained via reversed co-precipitation Solvent engineering of SnO2 ETL for enhanced performance of carbon-based CsPbIBr2 PSCs Development of two novel supramolecular metallogels of Mn(II) and Zn(II)-ion derived from L-(+) tartaric acid for fabricating light responsive junction type semiconducting diodes with non-ohmic conduction mechanism Exploring the ZnO/CuO/g-C3N4 nanocomposite for superior energy storage capabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1