{"title":"Time-variant planar laser-induced fluorescence for thickness measurement of wavy liquid films: a calibration-free and threshold-free method","authors":"Yoshiaki Kamada, Zhenying Wang, Chihiro Inoue, Shigeki Senoo","doi":"10.1007/s00348-025-03989-z","DOIUrl":null,"url":null,"abstract":"<div><p>The planar laser-induced fluorescence (PLIF) method has been widely applied for measuring the thickness of liquid films. To identify the liquid–gas interface, however, PLIF-based methods require an artificial threshold value of brightness or a calibration curve between the thickness and the brightness, limiting its application in measuring unknown film thickness. To overcome the drawbacks, we propose a new method, time-variant PLIF (T-PLIF), which employs an index of time variance of brightness to detect the interface. We first establish the mathematical principle of T-PLIF, wherein the time variance of a phase-dependent variable becomes the maximum exactly at the time-averaged position of the wavy interface. We then perform experiments for a well-controlled downward annular liquid film flow to test the reliability of T-PLIF. We demonstrate that T-PLIF measures liquid film thickness of <span>\\(h > 0.2\\,\\textrm{mm}\\)</span> with the accuracy of <span>\\(\\varepsilon \\le 10\\%\\)</span> to the theoretical reference and <span>\\(h \\le 0.2\\,\\textrm{mm}\\)</span> with <span>\\(\\varepsilon = 20\\%\\)</span>. T-PLIF is able to quantify the film thickness with no need for any pre-/post-calibration or artificial threshold values. We further confirm the applicability of T-PLIF to the wavy film flow sheared by an airflow up to <span>\\(30\\,\\text{m/s}\\)</span> by measuring the phase velocity and wavelength, which well matches the theoretical results.</p></div>","PeriodicalId":554,"journal":{"name":"Experiments in Fluids","volume":"66 3","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experiments in Fluids","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00348-025-03989-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The planar laser-induced fluorescence (PLIF) method has been widely applied for measuring the thickness of liquid films. To identify the liquid–gas interface, however, PLIF-based methods require an artificial threshold value of brightness or a calibration curve between the thickness and the brightness, limiting its application in measuring unknown film thickness. To overcome the drawbacks, we propose a new method, time-variant PLIF (T-PLIF), which employs an index of time variance of brightness to detect the interface. We first establish the mathematical principle of T-PLIF, wherein the time variance of a phase-dependent variable becomes the maximum exactly at the time-averaged position of the wavy interface. We then perform experiments for a well-controlled downward annular liquid film flow to test the reliability of T-PLIF. We demonstrate that T-PLIF measures liquid film thickness of \(h > 0.2\,\textrm{mm}\) with the accuracy of \(\varepsilon \le 10\%\) to the theoretical reference and \(h \le 0.2\,\textrm{mm}\) with \(\varepsilon = 20\%\). T-PLIF is able to quantify the film thickness with no need for any pre-/post-calibration or artificial threshold values. We further confirm the applicability of T-PLIF to the wavy film flow sheared by an airflow up to \(30\,\text{m/s}\) by measuring the phase velocity and wavelength, which well matches the theoretical results.
期刊介绍:
Experiments in Fluids examines the advancement, extension, and improvement of new techniques of flow measurement. The journal also publishes contributions that employ existing experimental techniques to gain an understanding of the underlying flow physics in the areas of turbulence, aerodynamics, hydrodynamics, convective heat transfer, combustion, turbomachinery, multi-phase flows, and chemical, biological and geological flows. In addition, readers will find papers that report on investigations combining experimental and analytical/numerical approaches.