{"title":"Identification of Key Genes and Immune Characteristics of SASP in Acute Ischemic Stroke","authors":"Hanlu Cai, Huixue Zhang, Guanghao Xin, Shanshan Peng, Fanfan Xu, Nan Zhang, Yichen Li, Wei Zhang, Ying Li, Yingjie Ren, Yu Wang, Zhaojun Liu, Xiaotong Kong, Lihua Wang","doi":"10.1007/s12031-025-02312-z","DOIUrl":null,"url":null,"abstract":"<div><p>The senescence-associated secretory phenotype (SASP) is a key mechanism through which senescent cardiovascular cells contribute to plaque formation, instability, and vascular remodeling. However, the correlation between SASP and acute ischemic stroke (AIS), particularly its immune inflammation characteristics, remains underexplored and requires further elucidation. We downloaded the AIS database from the GEO database and obtained SASP genes from the SASP Atlas and related literature. Using two machine learning algorithms, we identified five hub genes. Unsupervised cluster analysis was performed on patients with AIS and DEGs separately to identify distinct gene clusters, which were then analyzed for immune characteristics. We then explored the related biological functions and immune properties of the hub genes by using various algorithms (GSEA, GSVA, and CIBERSORT). Principal component analysis (PCA) was used to generate SASP-related gene scores based on the expression of hub genes. A logistic regression algorithm was employed to establish an AIS classification diagnosis model based on the hub genes. Peripheral venous blood was collected for validation using real-time quantitative PCR (RT-qPCR). We identified five hub genes using two machine learning algorithms and validated them with RT-qPCR. Gene cluster analysis revealed two distinct clusters, SASP-related gene cluster B and differentially expressed gene cluster B, indicating that the acute AIS samples had more severe immune inflammatory response and a higher risk of disease deterioration. We constructed a gene-drug regulatory network for PIN1 and established an AIS diagnostic model and nomogram using a logistic regression algorithm. This study explored the gene expression, molecular patterns, and immunological characteristics of SASP in patients with AIS using bioinformatic methods. It provides a theoretical basis and research direction for identifying new diagnostic markers for AIS, understanding the molecular mechanism of thrombosis, and improving the classification, diagnosis, treatment, and prognosis of AIS.</p></div>","PeriodicalId":652,"journal":{"name":"Journal of Molecular Neuroscience","volume":"75 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s12031-025-02312-z","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The senescence-associated secretory phenotype (SASP) is a key mechanism through which senescent cardiovascular cells contribute to plaque formation, instability, and vascular remodeling. However, the correlation between SASP and acute ischemic stroke (AIS), particularly its immune inflammation characteristics, remains underexplored and requires further elucidation. We downloaded the AIS database from the GEO database and obtained SASP genes from the SASP Atlas and related literature. Using two machine learning algorithms, we identified five hub genes. Unsupervised cluster analysis was performed on patients with AIS and DEGs separately to identify distinct gene clusters, which were then analyzed for immune characteristics. We then explored the related biological functions and immune properties of the hub genes by using various algorithms (GSEA, GSVA, and CIBERSORT). Principal component analysis (PCA) was used to generate SASP-related gene scores based on the expression of hub genes. A logistic regression algorithm was employed to establish an AIS classification diagnosis model based on the hub genes. Peripheral venous blood was collected for validation using real-time quantitative PCR (RT-qPCR). We identified five hub genes using two machine learning algorithms and validated them with RT-qPCR. Gene cluster analysis revealed two distinct clusters, SASP-related gene cluster B and differentially expressed gene cluster B, indicating that the acute AIS samples had more severe immune inflammatory response and a higher risk of disease deterioration. We constructed a gene-drug regulatory network for PIN1 and established an AIS diagnostic model and nomogram using a logistic regression algorithm. This study explored the gene expression, molecular patterns, and immunological characteristics of SASP in patients with AIS using bioinformatic methods. It provides a theoretical basis and research direction for identifying new diagnostic markers for AIS, understanding the molecular mechanism of thrombosis, and improving the classification, diagnosis, treatment, and prognosis of AIS.
期刊介绍:
The Journal of Molecular Neuroscience is committed to the rapid publication of original findings that increase our understanding of the molecular structure, function, and development of the nervous system. The criteria for acceptance of manuscripts will be scientific excellence, originality, and relevance to the field of molecular neuroscience. Manuscripts with clinical relevance are especially encouraged since the journal seeks to provide a means for accelerating the progression of basic research findings toward clinical utilization. All experiments described in the Journal of Molecular Neuroscience that involve the use of animal or human subjects must have been approved by the appropriate institutional review committee and conform to accepted ethical standards.