Room-Temperature Synthesis of pH-Responsive MOF Nanocarriers for Targeted Drug Delivery in Cancer Therapy

IF 4.7 3区 工程技术 Q2 ENGINEERING, ENVIRONMENTAL Journal of Polymers and the Environment Pub Date : 2025-01-11 DOI:10.1007/s10924-025-03496-6
Amir Kazemi, Mohammad Hossein Afshari, Hasan Baesmat, Saber Keshavarz, Fateme Zeinali, Shahla Zahiri, Elahe Torabi, Faranak Manteghi, Sohrab Rohani
{"title":"Room-Temperature Synthesis of pH-Responsive MOF Nanocarriers for Targeted Drug Delivery in Cancer Therapy","authors":"Amir Kazemi,&nbsp;Mohammad Hossein Afshari,&nbsp;Hasan Baesmat,&nbsp;Saber Keshavarz,&nbsp;Fateme Zeinali,&nbsp;Shahla Zahiri,&nbsp;Elahe Torabi,&nbsp;Faranak Manteghi,&nbsp;Sohrab Rohani","doi":"10.1007/s10924-025-03496-6","DOIUrl":null,"url":null,"abstract":"<div><p>The synthesis of nanoscale metal-organic frameworks (MOFs) is emerging as a promising method for targeted drug delivery in cancer therapy. In this study, unlike conventional solvothermal methods that require high temperatures, room-temperature synthesis of two Zn-MOF-74 variants was achieved using zinc nitrate and zinc acetate with triethylamine (TEA). The use of different anions allows precise control over the morphology and particle size of the MOF, optimizing drug loading in nanocarriers. Drug loading and release were evaluated using 5-fluorouracil (5-FU) as a model drug in both aqueous and ethanolic environments. The results showed that Zn-MOF-74 prepared with zinc acetate (R<sub>A</sub>-MOF-74) at a 1:1 drug-to-nanocarrier ratio in ethanol exhibited superior drug adsorption and release characteristics. To enhance biocompatibility and controlled release, R<sub>A</sub>-MOF-74 nanocarriers were coated with two biodegradable polymers, sodium alginate (ALG) and polydopamine (PDA), to improve stability at low pH and enhance release control. The release profiles of 5-FU from R<sub>A</sub>-MOF-74 and its coated samples (PDA and ALG) were evaluated at different pH levels. In uncoated R<sub>A</sub>-MOF-74, drug release at pH 7.4 and 8 was 48.4% and 59.1%, respectively, reaching 100% at pH 1.5. For the coated samples, 5-FU@R<sub>A</sub>-MOF-74/ALG released 19.8% and 45.9% at pH 1.5 and 8, respectively, while 5-FU@R<sub>A</sub>-MOF-74/PDA showed 25.2% and 40.8% release at pH 7.4 and 5.5. These results clearly highlight pH-sensitive release and the role of biocompatible coatings in enhancing controlled drug release, demonstrating the potential of Zn-MOF-74 with controlled morphology for pH-responsive delivery of 5-FU in cancer therapy, paving the way for future in vivo applications.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"33 3","pages":"1505 - 1516"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-025-03496-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The synthesis of nanoscale metal-organic frameworks (MOFs) is emerging as a promising method for targeted drug delivery in cancer therapy. In this study, unlike conventional solvothermal methods that require high temperatures, room-temperature synthesis of two Zn-MOF-74 variants was achieved using zinc nitrate and zinc acetate with triethylamine (TEA). The use of different anions allows precise control over the morphology and particle size of the MOF, optimizing drug loading in nanocarriers. Drug loading and release were evaluated using 5-fluorouracil (5-FU) as a model drug in both aqueous and ethanolic environments. The results showed that Zn-MOF-74 prepared with zinc acetate (RA-MOF-74) at a 1:1 drug-to-nanocarrier ratio in ethanol exhibited superior drug adsorption and release characteristics. To enhance biocompatibility and controlled release, RA-MOF-74 nanocarriers were coated with two biodegradable polymers, sodium alginate (ALG) and polydopamine (PDA), to improve stability at low pH and enhance release control. The release profiles of 5-FU from RA-MOF-74 and its coated samples (PDA and ALG) were evaluated at different pH levels. In uncoated RA-MOF-74, drug release at pH 7.4 and 8 was 48.4% and 59.1%, respectively, reaching 100% at pH 1.5. For the coated samples, 5-FU@RA-MOF-74/ALG released 19.8% and 45.9% at pH 1.5 and 8, respectively, while 5-FU@RA-MOF-74/PDA showed 25.2% and 40.8% release at pH 7.4 and 5.5. These results clearly highlight pH-sensitive release and the role of biocompatible coatings in enhancing controlled drug release, demonstrating the potential of Zn-MOF-74 with controlled morphology for pH-responsive delivery of 5-FU in cancer therapy, paving the way for future in vivo applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Polymers and the Environment
Journal of Polymers and the Environment 工程技术-高分子科学
CiteScore
9.50
自引率
7.50%
发文量
297
审稿时长
9 months
期刊介绍: The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.
期刊最新文献
Design Optimization and Rheological Property of Recyclable Epoxy Asphalt Advanced Hydrogel Dressing with Zinc Oxide-Copper Oxide Nanocomposite for Effective Wound Management: Mechanochemistry, Antibacterial Efficacy, Cytocompatibility and Wound Healing Potentials Enhancing Corn Starch Hydrogels for Effective Sorption of Potentially Toxic Metals: The Role of Amylose and Amylopectin Content Bioplastic (Polyhydroxybutyrate) Synthesis Using Orange Wastes by the Marine Bacterium Bacillus sp. Caspian04 Preparation of Copolymers Based on Aniline and 2[2-chloro-1-methylbut-2-en-1-yl]Aniline and Their Application for the Removal of Methyl Orange from Aqueous Solutions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1