Sachin Sirohi, Amit Kumar, Manohar Singh, Dariusz Fydrych, Chandan Pandey
{"title":"Pulsed GTAW joint of P92 steel and Inconel 625: microstructure and mechanical properties","authors":"Sachin Sirohi, Amit Kumar, Manohar Singh, Dariusz Fydrych, Chandan Pandey","doi":"10.1007/s43452-025-01153-2","DOIUrl":null,"url":null,"abstract":"<div><p>In the present work, the relationship between microstructure and mechanical properties has been investigated for the dissimilar welded joint of P92 steel and Inconel 625, fabricated using the pulsed current gas tungsten arc welding (GTAW) process. Microstructural investigation revealed that the pulsed current resulted in finer equiaxed dendrites in the bulk weld metal, while columnar dendrites were observed in the weld metal near the interface. A more uniform distribution of the fine secondary phases was observed in FESEM study. The EDS study of the inter-dendritic areas showed alloying element segregation throughout the weld metal, with higher density near the interface. This segregation led to the formation of secondary phases, specifically MC-type carbides (NbC, TiC), which was confirmed by the EDS analysis. The characterization of the interface between P92 steel and ERNiCrMo-3 filler weld revealed the presence of a filler-deficient zone, marked by features such as islands, peninsulas, and unmixed zones. Elemental diffusion and segregation of Nb, Mo, and Ti at the interface were also confirmed through EDS analysis. Tensile testing demonstrated acceptable tensile properties of the welded joint at room temperature, with a tensile strength of 764 ± 8 MPa and elongation of 33 ± 1%, with the sample failing from the P92 base metal. Significant hardness variations were observed along the welded joint, with the most notable changes occurring in the P92 heat-affected zone (HAZ). A maximum hardness of 420 HV was recorded in the coarse-grained HAZ of P92, while the inter-critical HAZ of P92 showed a minimum hardness of 215 HV. In addition, considerable hardness variation was noted within the weld metal, corresponding to each welding pass as well as across the transverse direction of the welded joint. The maximum and minimum hardness values in the weld metal were 261 ± 9 and 239 ± 13 HV, corresponding to the center and capping passes, respectively, with an average hardness of 250 HV. The Charpy toughness test also indicated acceptable results, with an impact energy value of 176 ± 8.5 J. The study also provides a detailed discussion on the relationship between microstructure and mechanical properties, highlighting how microstructural features influence the mechanical performance of the welded joint.</p></div>","PeriodicalId":55474,"journal":{"name":"Archives of Civil and Mechanical Engineering","volume":"25 2","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of Civil and Mechanical Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s43452-025-01153-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
In the present work, the relationship between microstructure and mechanical properties has been investigated for the dissimilar welded joint of P92 steel and Inconel 625, fabricated using the pulsed current gas tungsten arc welding (GTAW) process. Microstructural investigation revealed that the pulsed current resulted in finer equiaxed dendrites in the bulk weld metal, while columnar dendrites were observed in the weld metal near the interface. A more uniform distribution of the fine secondary phases was observed in FESEM study. The EDS study of the inter-dendritic areas showed alloying element segregation throughout the weld metal, with higher density near the interface. This segregation led to the formation of secondary phases, specifically MC-type carbides (NbC, TiC), which was confirmed by the EDS analysis. The characterization of the interface between P92 steel and ERNiCrMo-3 filler weld revealed the presence of a filler-deficient zone, marked by features such as islands, peninsulas, and unmixed zones. Elemental diffusion and segregation of Nb, Mo, and Ti at the interface were also confirmed through EDS analysis. Tensile testing demonstrated acceptable tensile properties of the welded joint at room temperature, with a tensile strength of 764 ± 8 MPa and elongation of 33 ± 1%, with the sample failing from the P92 base metal. Significant hardness variations were observed along the welded joint, with the most notable changes occurring in the P92 heat-affected zone (HAZ). A maximum hardness of 420 HV was recorded in the coarse-grained HAZ of P92, while the inter-critical HAZ of P92 showed a minimum hardness of 215 HV. In addition, considerable hardness variation was noted within the weld metal, corresponding to each welding pass as well as across the transverse direction of the welded joint. The maximum and minimum hardness values in the weld metal were 261 ± 9 and 239 ± 13 HV, corresponding to the center and capping passes, respectively, with an average hardness of 250 HV. The Charpy toughness test also indicated acceptable results, with an impact energy value of 176 ± 8.5 J. The study also provides a detailed discussion on the relationship between microstructure and mechanical properties, highlighting how microstructural features influence the mechanical performance of the welded joint.
期刊介绍:
Archives of Civil and Mechanical Engineering (ACME) publishes both theoretical and experimental original research articles which explore or exploit new ideas and techniques in three main areas: structural engineering, mechanics of materials and materials science.
The aim of the journal is to advance science related to structural engineering focusing on structures, machines and mechanical systems. The journal also promotes advancement in the area of mechanics of materials, by publishing most recent findings in elasticity, plasticity, rheology, fatigue and fracture mechanics.
The third area the journal is concentrating on is materials science, with emphasis on metals, composites, etc., their structures and properties as well as methods of evaluation.
In addition to research papers, the Editorial Board welcomes state-of-the-art reviews on specialized topics. All such articles have to be sent to the Editor-in-Chief before submission for pre-submission review process. Only articles approved by the Editor-in-Chief in pre-submission process can be submitted to the journal for further processing. Approval in pre-submission stage doesn''t guarantee acceptance for publication as all papers are subject to a regular referee procedure.