L-tyrosine inhibits the formation of amyloid fibers of human lysozyme at physiological pH and temperature

IF 3 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Amino Acids Pub Date : 2025-02-16 DOI:10.1007/s00726-025-03445-6
Santos López, Arturo Rojo-Domínguez, Roxana López-Simeon, Alejandro Sosa-Peinado, Hugo Nájera
{"title":"L-tyrosine inhibits the formation of amyloid fibers of human lysozyme at physiological pH and temperature","authors":"Santos López,&nbsp;Arturo Rojo-Domínguez,&nbsp;Roxana López-Simeon,&nbsp;Alejandro Sosa-Peinado,&nbsp;Hugo Nájera","doi":"10.1007/s00726-025-03445-6","DOIUrl":null,"url":null,"abstract":"<div><p>Amyloid fibers are implicated in numerous diseases, making their study crucial for identifying effective therapeutic compounds. This research highlights the ability of L-tyrosine to inhibit the formation of amyloid fibers in human lysozyme. At a 1:1 molar ratio under physiological conditions (pH 7.4, 37 °C), L-tyrosine significantly reduces amyloid fiber formation, as evidenced by a decrease in thioflavin T fluorescence. Differential scanning calorimetry (DSC) shows a major energy requirement for temperature denaturation when the lysozyme is in the presence of L-tyrosine. Additionally, chemical denaturation experiments reveal a shift in the intrinsic fluorescence spectrum of lysozyme in the presence of L-tyrosine, indicating a direct interaction. Computational docking studies with Molecular Operating Environment (MOE) further confirm that L-tyrosine binds effectively, exhibiting similar binding energies to those of the natural substrate. This study underscores L-tyrosine’s potential as a strong inhibitor of amyloid fiber formation, demonstrating its stabilizing effect on lysozyme and its promise in therapeutic applications.</p></div>","PeriodicalId":7810,"journal":{"name":"Amino Acids","volume":"57 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00726-025-03445-6.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Amino Acids","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s00726-025-03445-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Amyloid fibers are implicated in numerous diseases, making their study crucial for identifying effective therapeutic compounds. This research highlights the ability of L-tyrosine to inhibit the formation of amyloid fibers in human lysozyme. At a 1:1 molar ratio under physiological conditions (pH 7.4, 37 °C), L-tyrosine significantly reduces amyloid fiber formation, as evidenced by a decrease in thioflavin T fluorescence. Differential scanning calorimetry (DSC) shows a major energy requirement for temperature denaturation when the lysozyme is in the presence of L-tyrosine. Additionally, chemical denaturation experiments reveal a shift in the intrinsic fluorescence spectrum of lysozyme in the presence of L-tyrosine, indicating a direct interaction. Computational docking studies with Molecular Operating Environment (MOE) further confirm that L-tyrosine binds effectively, exhibiting similar binding energies to those of the natural substrate. This study underscores L-tyrosine’s potential as a strong inhibitor of amyloid fiber formation, demonstrating its stabilizing effect on lysozyme and its promise in therapeutic applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Amino Acids
Amino Acids 生物-生化与分子生物学
CiteScore
6.40
自引率
5.70%
发文量
99
审稿时长
2.2 months
期刊介绍: Amino Acids publishes contributions from all fields of amino acid and protein research: analysis, separation, synthesis, biosynthesis, cross linking amino acids, racemization/enantiomers, modification of amino acids as phosphorylation, methylation, acetylation, glycosylation and nonenzymatic glycosylation, new roles for amino acids in physiology and pathophysiology, biology, amino acid analogues and derivatives, polyamines, radiated amino acids, peptides, stable isotopes and isotopes of amino acids. Applications in medicine, food chemistry, nutrition, gastroenterology, nephrology, neurochemistry, pharmacology, excitatory amino acids are just some of the topics covered. Fields of interest include: Biochemistry, food chemistry, nutrition, neurology, psychiatry, pharmacology, nephrology, gastroenterology, microbiology
期刊最新文献
Serum amino acid alterations in hyperuricemia: potential targets for renal disease prevention L-tyrosine inhibits the formation of amyloid fibers of human lysozyme at physiological pH and temperature Metabolism of arginine in juvenile largemouth bass (Micropterus salmoides) after oral or intraperitoneal administration of arginine or its substrates Amino acid stable carbon isotopes in nail keratin illuminate breastfeeding and weaning practices of mother – infant dyads Targeted delivery of curcumin and CM11 peptide against hepatocellular carcinoma cells based on binding affinity of PreS1-coated chitosan nanoparticles to SB3 protein
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1