Precision material removal and hardness reduction in silicon carbide using ultraviolet nanosecond pulse laser

IF 2.5 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Applied Physics A Pub Date : 2025-02-17 DOI:10.1007/s00339-025-08296-2
Hsin-Yi Tsai, Yu-Hsuan Lin, Kuo-Cheng Huang, Chen-Ju Lee, J. Andrew Yeh, Yi Yang, Chien-Fang Ding
{"title":"Precision material removal and hardness reduction in silicon carbide using ultraviolet nanosecond pulse laser","authors":"Hsin-Yi Tsai,&nbsp;Yu-Hsuan Lin,&nbsp;Kuo-Cheng Huang,&nbsp;Chen-Ju Lee,&nbsp;J. Andrew Yeh,&nbsp;Yi Yang,&nbsp;Chien-Fang Ding","doi":"10.1007/s00339-025-08296-2","DOIUrl":null,"url":null,"abstract":"<div><p>Silicon carbide (SiC), as a key material in the third-generation semiconductor industry, holds critical importance due to its superior thermal conductivity, high breakdown voltage, and wide bandgap. However, the conventional chemical mechanical polishing (CMP) process used in SiC wafer manufacturing is time-consuming and resource-intensive, involving significant material consumption and prolonged processing times. In this study, we explored the application of laser-assisted dry ablation as a pre-treatment for CMP. The experimental results showed that the single laser ablation depth of SiC is about 2 μm, and demonstrated that a laser spot overlap rate between 30% and 60% can generate a relatively lower surface roughness of SiC. This optimal range of overlap ensures a smoother ablation process, minimizing the irregularities on the SiC wafer surface. After a single pass of laser dry ablation, SiC hardness can be reduced to less than 3% of its original value, while material removal depth can be precisely controlled by adjusting the number of laser passes. With 50 repetitions, a material removal depth of nearly 30 μm was achieved. This reduction in hardness and enhanced material removal directly contribute to improve the efficiency of subsequent CMP processes by reducing polishing time and wear on grinding heads. In addition, after more than 5 times of laser treatment and then wet grinding, the thickness achievement rate can be increased from 73 to 93%. These results provide the important academic reference value. The integration of laser-assisted ablation into SiC wafer processing presents significant advantages in terms of increasing production throughput and reducing overall manufacturing costs. By simplifying the polishing steps and minimizing consumable usage, this approach offers a promising avenue for industrial applications, particularly in enhancing SiC wafer yield and optimizing semiconductor production workflows.</p></div>","PeriodicalId":473,"journal":{"name":"Applied Physics A","volume":"131 3","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00339-025-08296-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics A","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00339-025-08296-2","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Silicon carbide (SiC), as a key material in the third-generation semiconductor industry, holds critical importance due to its superior thermal conductivity, high breakdown voltage, and wide bandgap. However, the conventional chemical mechanical polishing (CMP) process used in SiC wafer manufacturing is time-consuming and resource-intensive, involving significant material consumption and prolonged processing times. In this study, we explored the application of laser-assisted dry ablation as a pre-treatment for CMP. The experimental results showed that the single laser ablation depth of SiC is about 2 μm, and demonstrated that a laser spot overlap rate between 30% and 60% can generate a relatively lower surface roughness of SiC. This optimal range of overlap ensures a smoother ablation process, minimizing the irregularities on the SiC wafer surface. After a single pass of laser dry ablation, SiC hardness can be reduced to less than 3% of its original value, while material removal depth can be precisely controlled by adjusting the number of laser passes. With 50 repetitions, a material removal depth of nearly 30 μm was achieved. This reduction in hardness and enhanced material removal directly contribute to improve the efficiency of subsequent CMP processes by reducing polishing time and wear on grinding heads. In addition, after more than 5 times of laser treatment and then wet grinding, the thickness achievement rate can be increased from 73 to 93%. These results provide the important academic reference value. The integration of laser-assisted ablation into SiC wafer processing presents significant advantages in terms of increasing production throughput and reducing overall manufacturing costs. By simplifying the polishing steps and minimizing consumable usage, this approach offers a promising avenue for industrial applications, particularly in enhancing SiC wafer yield and optimizing semiconductor production workflows.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Physics A
Applied Physics A 工程技术-材料科学:综合
CiteScore
4.80
自引率
7.40%
发文量
964
审稿时长
38 days
期刊介绍: Applied Physics A publishes experimental and theoretical investigations in applied physics as regular articles, rapid communications, and invited papers. The distinguished 30-member Board of Editors reflects the interdisciplinary approach of the journal and ensures the highest quality of peer review.
期刊最新文献
Functionalization of SnS2 monolayer towards spintronic applications by doping with FeXn (X = C and N; n = 1, 3, and 6) clusters The effect of matching glass frits on the metallization of n+ emitter by balancing wetting and sintering behavior Investigation of the effects of thermally-induced band gap modification on the size and shape of modification regions formed in ultrafast laser bonding Structural with Rietveld analysis and enhancement of magnetic, magnetocaloric study of Al substituted Ni–Cd bulk spinel ferrites RGO flakes decorated NiO nanoflowers for supercapacitor applications-synthesis and characterizations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1