Ayaz Mohmood Dar, Syed Kaiser Bukhari, Dar Sarvat Gull
{"title":"Advancing Subsurface Fault Resonance through Integrated Geophysical and Hyperspectral Remote Sensing Techniques","authors":"Ayaz Mohmood Dar, Syed Kaiser Bukhari, Dar Sarvat Gull","doi":"10.1134/S0016793224700312","DOIUrl":null,"url":null,"abstract":"<p>The study used the geomagnetic field and hyperspectral remote sensing techniques to acquire information about subsurface characteristics and delineate faults. In this study, ground magnetic surveys were conducted at various locations along the fault in the Kashmir Valley. The study found that the faults are associated with magnetic minima, indicating potential hydraulic activities along the fault planes. The anomalies observed in the magnetic field were attributed to oxidation and martitization processes occurring at fault rupture zones. These processes led to a reduction in iron content, resulting in anomalies in linear profiles. The total magnetic intensity (TMI) varied by approximately 25 nT, considering the crustal thickness and lithological characteristics of the study area. This suggests that magnetic studies of the Earth’s crust can be highly effective for fault delineation purposes. Additionally, this study employed hyperspectral remote sensing analysis across the fault profile. This analysis revealed that fault planes exhibited spectral variations. Specifically, spectral reflectance increased consistently with longer wavelengths, which indicates transformation of Fe<sup>3+</sup> to Fe<sup>2+</sup>. These findings indicate that hyperspectral studies can be well-suited for detecting and validating subsurface faults. The study found that the fault location can be inferred by combining the magnetic anomaly data and hyperspectral remote sensing data. This integrated approach allows for improved fault delineation and a better understanding of subsurface fault characteristics, which are essential for seismological studies.</p>","PeriodicalId":55597,"journal":{"name":"Geomagnetism and Aeronomy","volume":"64 8","pages":"1215 - 1224"},"PeriodicalIF":0.7000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geomagnetism and Aeronomy","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1134/S0016793224700312","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The study used the geomagnetic field and hyperspectral remote sensing techniques to acquire information about subsurface characteristics and delineate faults. In this study, ground magnetic surveys were conducted at various locations along the fault in the Kashmir Valley. The study found that the faults are associated with magnetic minima, indicating potential hydraulic activities along the fault planes. The anomalies observed in the magnetic field were attributed to oxidation and martitization processes occurring at fault rupture zones. These processes led to a reduction in iron content, resulting in anomalies in linear profiles. The total magnetic intensity (TMI) varied by approximately 25 nT, considering the crustal thickness and lithological characteristics of the study area. This suggests that magnetic studies of the Earth’s crust can be highly effective for fault delineation purposes. Additionally, this study employed hyperspectral remote sensing analysis across the fault profile. This analysis revealed that fault planes exhibited spectral variations. Specifically, spectral reflectance increased consistently with longer wavelengths, which indicates transformation of Fe3+ to Fe2+. These findings indicate that hyperspectral studies can be well-suited for detecting and validating subsurface faults. The study found that the fault location can be inferred by combining the magnetic anomaly data and hyperspectral remote sensing data. This integrated approach allows for improved fault delineation and a better understanding of subsurface fault characteristics, which are essential for seismological studies.
期刊介绍:
Geomagnetism and Aeronomy is a bimonthly periodical that covers the fields of interplanetary space; geoeffective solar events; the magnetosphere; the ionosphere; the upper and middle atmosphere; the action of solar variability and activity on atmospheric parameters and climate; the main magnetic field and its secular variations, excursion, and inversion; and other related topics.