Solidification effect of MXene nano-enhanced phase change material on 2E’s analysis of latent heat thermal energy storage

IF 3.1 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Journal of Thermal Analysis and Calorimetry Pub Date : 2024-12-26 DOI:10.1007/s10973-024-13936-5
Utkarsh Srivastava, Rashmi Rekha Sahoo
{"title":"Solidification effect of MXene nano-enhanced phase change material on 2E’s analysis of latent heat thermal energy storage","authors":"Utkarsh Srivastava,&nbsp;Rashmi Rekha Sahoo","doi":"10.1007/s10973-024-13936-5","DOIUrl":null,"url":null,"abstract":"<div><p>In the present study, systems efficiency, heat transfer rate, exergy destruction, entropy generation number, exergetic efficiency, liquid fraction, and solidification temperature contours are determined for double-tube thermal energy storage (DT-TES) and triple-tube thermal energy storage (TT-TES) systems using MXene-based nano-enhanced phase changes material (NEPCM). The findings showed that the DT-TES using pure beeswax PCM in pure solidification has a discharge exergy 14.76% lower than that of MXene-based NEPCM. Using the TT-TES system, pure PCM and MXene NEPCM produced 2.47% and 3.62% less entropy at 2400 s than pure beeswax. Over 2400 s, DT-TES using pure beeswax discharged more effectively. Because of the superior thermophysical characteristics of MXene nanoparticles, the TT-TES system solidified beeswax PCM 18.53% faster than pure PCM. Consequently, under TT-TES latent heat, MXene-based nano-enhanced beeswax PCM solidifies more quickly per volume.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"150 1","pages":"107 - 121"},"PeriodicalIF":3.1000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13936-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In the present study, systems efficiency, heat transfer rate, exergy destruction, entropy generation number, exergetic efficiency, liquid fraction, and solidification temperature contours are determined for double-tube thermal energy storage (DT-TES) and triple-tube thermal energy storage (TT-TES) systems using MXene-based nano-enhanced phase changes material (NEPCM). The findings showed that the DT-TES using pure beeswax PCM in pure solidification has a discharge exergy 14.76% lower than that of MXene-based NEPCM. Using the TT-TES system, pure PCM and MXene NEPCM produced 2.47% and 3.62% less entropy at 2400 s than pure beeswax. Over 2400 s, DT-TES using pure beeswax discharged more effectively. Because of the superior thermophysical characteristics of MXene nanoparticles, the TT-TES system solidified beeswax PCM 18.53% faster than pure PCM. Consequently, under TT-TES latent heat, MXene-based nano-enhanced beeswax PCM solidifies more quickly per volume.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MXene纳米增强相变材料的凝固效应对潜热蓄热分析的影响
在本研究中,确定了使用mxene基纳米增强相变材料(NEPCM)的双管蓄热(DT-TES)和三管蓄热(TT-TES)系统的系统效率、传热速率、火能破坏、熵产数、火能效率、液体分数和凝固温度曲线。结果表明:纯蜂蜡PCM的DT-TES放电能比mxene的NEPCM低14.76%;使用TT-TES系统,纯PCM和MXene NEPCM在2400 s时比纯蜂蜡产生的熵分别减少2.47%和3.62%。超过2400s,使用纯蜂蜡的DT-TES排放更有效。由于MXene纳米颗粒优越的热物理特性,TT-TES体系固化蜂蜡PCM的速度比纯PCM快18.53%。因此,在TT-TES潜热作用下,mxene基纳米增强蜂蜡PCM每体积固化速度更快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.50
自引率
9.10%
发文量
577
审稿时长
3.8 months
期刊介绍: Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews. The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.
期刊最新文献
Smectite intercalation compounds with ethyl lauroyl arginate (LAE®): structure and thermal decomposition mechanisms evidenced by HT-FTIR and TG/FTIR New wolframite-type micromaterials doped with Fe3+- and f-electron metal ions AI-driven performance and emission forecasting in diesel–hydrogen dual-fuel engines: a machine learning approach Performance enhancement of solar-powered PV/T modules with different techniques: precise review A comprehensive review of hybrid liquid and PCM cooling BTMS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1