Investigation of thermal properties of Al–Cu eutectic alloy for phase change energy storage applications

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Journal of Thermal Analysis and Calorimetry Pub Date : 2024-12-26 DOI:10.1007/s10973-024-13952-5
Dragan Manasijević, Ljubiša Balanović, Nicanor Cimpoesu, Ivana Marković, Milan Gorgievski, Uroš Stamenković, Aleksandra Stepanović
{"title":"Investigation of thermal properties of Al–Cu eutectic alloy for phase change energy storage applications","authors":"Dragan Manasijević,&nbsp;Ljubiša Balanović,&nbsp;Nicanor Cimpoesu,&nbsp;Ivana Marković,&nbsp;Milan Gorgievski,&nbsp;Uroš Stamenković,&nbsp;Aleksandra Stepanović","doi":"10.1007/s10973-024-13952-5","DOIUrl":null,"url":null,"abstract":"<div><p>The knowledge of thermal properties such as thermal conductivity, specific heat, and latent heat of melting is essential for the development of phase change materials (PCMs) for latent heat energy storage applications. Due to their good properties, aluminum-based eutectic alloys have become the most widely studied metal-based PCMs. In the present study, microstructure, thermal diffusivity, thermal conductivity, specific heat capacity, and latent heat of melting of the Al-33.6 mass% Cu eutectic alloy were examined using scanning electron microscopy, energy dispersion spectroscopy, differential scanning calorimetry, and light flash method. The results show that the microstructure of the investigated alloy consists of fine and coarse (Al) + Al<sub>2</sub>Cu eutectic regions. Specific heat, thermal diffusivity, and thermal conductivity increase with increasing temperature in the temperature range 25–400 °C. The thermal conductivity of the studied alloy at room temperature is 134.3 Wm<sup>−1</sup> K<sup>−1</sup>. The measured latent heat is 319.5 Jg<sup>−1</sup>. The obtained results indicate that the Al–Cu eutectic alloy has considerable potential for application in the field of phase change energy storage materials.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"150 1","pages":"77 - 85"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13952-5","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The knowledge of thermal properties such as thermal conductivity, specific heat, and latent heat of melting is essential for the development of phase change materials (PCMs) for latent heat energy storage applications. Due to their good properties, aluminum-based eutectic alloys have become the most widely studied metal-based PCMs. In the present study, microstructure, thermal diffusivity, thermal conductivity, specific heat capacity, and latent heat of melting of the Al-33.6 mass% Cu eutectic alloy were examined using scanning electron microscopy, energy dispersion spectroscopy, differential scanning calorimetry, and light flash method. The results show that the microstructure of the investigated alloy consists of fine and coarse (Al) + Al2Cu eutectic regions. Specific heat, thermal diffusivity, and thermal conductivity increase with increasing temperature in the temperature range 25–400 °C. The thermal conductivity of the studied alloy at room temperature is 134.3 Wm−1 K−1. The measured latent heat is 319.5 Jg−1. The obtained results indicate that the Al–Cu eutectic alloy has considerable potential for application in the field of phase change energy storage materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.50
自引率
9.10%
发文量
577
审稿时长
3.8 months
期刊介绍: Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews. The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.
期刊最新文献
EDITORIAL 2025: Journal of Thermal Analysis and Calorimetry Preparation and properties of DAP-4@LLM-105 micro-nano core–shell structures Catalytic upgrading of oil products generated by retorting Dachengzi oil shale over different catalysts Solidification effect of MXene nano-enhanced phase change material on 2E’s analysis of latent heat thermal energy storage The disassembly analysis and thermal runaway characteristics of NCM811 family battery cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1