Optimization of Candida antarctica lipase immobilization in xerogels using an ionic liquid additive: enhanced esterification activity and thermal stability
Paloma Truccolo Reato, Adriele Sabrina Todero, Fabiana de Oliveira Pereira, Rogério Marcos Dallago, Marcelo Luis Mignoni
{"title":"Optimization of Candida antarctica lipase immobilization in xerogels using an ionic liquid additive: enhanced esterification activity and thermal stability","authors":"Paloma Truccolo Reato, Adriele Sabrina Todero, Fabiana de Oliveira Pereira, Rogério Marcos Dallago, Marcelo Luis Mignoni","doi":"10.1007/s10971-024-06656-7","DOIUrl":null,"url":null,"abstract":"<div><p>The immobilization of Candida antarctica lipase B (CALB) within xerogels synthesized through the sol-gel method was investigated, employing the ionic liquid 1-octyl-3-methylimidazolium bromide (C<sub>8</sub>MI.Br) as an additive to enhance enzymatic performance. The optimization of enzyme mass and ionic liquid concentration, using a central composite experimental design, identified optimal conditions of 0.27 g/mL enzyme and 1.53% ionic liquid, yielding a maximum total esterification activity exceeding 500 U. Structural characterization, including BET surface area analysis and X-ray diffraction, confirmed the formation of a porous, amorphous matrix conducive to enzyme stability and activity. The incorporation of the ionic liquid significantly enhanced the xerogels’ thermal and operational stability. Residual esterification activity was maintained at approximately 80% after 100 days under refrigeration, and the xerogels exhibited reusability for up to eight catalytic cycles with residual activity above 50%. Furthermore, thermal stability assessments demonstrated superior resistance of the immobilized enzyme to elevated temperatures compared to its free counterpart. This study underscores the critical role of ionic liquids as additives, facilitating the formation of structurally optimized xerogels while preserving enzyme activity and stability. The findings suggest significant potential for industrial biocatalytic processes, offering a sustainable and efficient approach to enzyme immobilization for applications requiring enhanced catalytic performance and longevity.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":664,"journal":{"name":"Journal of Sol-Gel Science and Technology","volume":"113 3","pages":"737 - 748"},"PeriodicalIF":2.3000,"publicationDate":"2024-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sol-Gel Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s10971-024-06656-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0
Abstract
The immobilization of Candida antarctica lipase B (CALB) within xerogels synthesized through the sol-gel method was investigated, employing the ionic liquid 1-octyl-3-methylimidazolium bromide (C8MI.Br) as an additive to enhance enzymatic performance. The optimization of enzyme mass and ionic liquid concentration, using a central composite experimental design, identified optimal conditions of 0.27 g/mL enzyme and 1.53% ionic liquid, yielding a maximum total esterification activity exceeding 500 U. Structural characterization, including BET surface area analysis and X-ray diffraction, confirmed the formation of a porous, amorphous matrix conducive to enzyme stability and activity. The incorporation of the ionic liquid significantly enhanced the xerogels’ thermal and operational stability. Residual esterification activity was maintained at approximately 80% after 100 days under refrigeration, and the xerogels exhibited reusability for up to eight catalytic cycles with residual activity above 50%. Furthermore, thermal stability assessments demonstrated superior resistance of the immobilized enzyme to elevated temperatures compared to its free counterpart. This study underscores the critical role of ionic liquids as additives, facilitating the formation of structurally optimized xerogels while preserving enzyme activity and stability. The findings suggest significant potential for industrial biocatalytic processes, offering a sustainable and efficient approach to enzyme immobilization for applications requiring enhanced catalytic performance and longevity.
期刊介绍:
The primary objective of the Journal of Sol-Gel Science and Technology (JSST), the official journal of the International Sol-Gel Society, is to provide an international forum for the dissemination of scientific, technological, and general knowledge about materials processed by chemical nanotechnologies known as the "sol-gel" process. The materials of interest include gels, gel-derived glasses, ceramics in form of nano- and micro-powders, bulk, fibres, thin films and coatings as well as more recent materials such as hybrid organic-inorganic materials and composites. Such materials exhibit a wide range of optical, electronic, magnetic, chemical, environmental, and biomedical properties and functionalities. Methods for producing sol-gel-derived materials and the industrial uses of these materials are also of great interest.