Modelling and optimization of thermal conductivity for MWCNT-SiO2(20:80)/hydraulic oil-based hybrid nanolubricants using ANN and RSM

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Journal of Thermal Analysis and Calorimetry Pub Date : 2024-12-16 DOI:10.1007/s10973-024-13888-w
Abhisek Haldar, Sankhadeep Chatterjee, Ankit Kotia, Niranjan Kumar, Subrata Kumar Ghosh
{"title":"Modelling and optimization of thermal conductivity for MWCNT-SiO2(20:80)/hydraulic oil-based hybrid nanolubricants using ANN and RSM","authors":"Abhisek Haldar,&nbsp;Sankhadeep Chatterjee,&nbsp;Ankit Kotia,&nbsp;Niranjan Kumar,&nbsp;Subrata Kumar Ghosh","doi":"10.1007/s10973-024-13888-w","DOIUrl":null,"url":null,"abstract":"<div><p>This research article presents the experimental evaluation of thermal conductivity for hydraulic oil-based hybrid nanolubricants with an aim to enhance the heat transfer potential in engineering applications. The nanolubricant samples were formulated at concentrations ranging from 0.3 to 1.8%. Using transient hot wire method, the thermal conductivity of nanolubricants were evaluated for all the samples from 30 to 80 °C. The maximum enhancement in thermal conductivity was 62.93% for the highest concentration. In this paper, response surface methodology (RSM) and artificial neural network (ANN) have been employed for prediction of the thermal conductivity of nanolubricants. In RSM, analysis of variance (ANOVA) and 3D surface plot techniques were used to determine the significance of the interaction parameters on the output. A new correlation has been proposed to predict the thermal conductivity of the nanolubricants with a <i>R</i><sup><i>2</i></sup> value of 0.9992. A combination of concentration and temperature (1.5783 vol% and 72.5695 °C) yielded to the maximum optimal thermal conductivity of 0.204526 Wm<sup>−1</sup> K<sup>−1</sup>. In addition, multilayer perceptron, a type of neural network model, has been trained and tested to predict the thermal conductivity of the nanolubricants. Experiments have revealed that the ANN model consisting of only 10 hidden neurons has been able to achieve an average <i>R</i><sup><i>2</i></sup> of 0.98567 and RMSE of 0.02463 thereby establishing its ingenuity. Comparatively, it turned out that the RSM model was slightly more accurate in predicting thermal conductivity than the ANN model.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"150 1","pages":"607 - 626"},"PeriodicalIF":3.0000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13888-w","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This research article presents the experimental evaluation of thermal conductivity for hydraulic oil-based hybrid nanolubricants with an aim to enhance the heat transfer potential in engineering applications. The nanolubricant samples were formulated at concentrations ranging from 0.3 to 1.8%. Using transient hot wire method, the thermal conductivity of nanolubricants were evaluated for all the samples from 30 to 80 °C. The maximum enhancement in thermal conductivity was 62.93% for the highest concentration. In this paper, response surface methodology (RSM) and artificial neural network (ANN) have been employed for prediction of the thermal conductivity of nanolubricants. In RSM, analysis of variance (ANOVA) and 3D surface plot techniques were used to determine the significance of the interaction parameters on the output. A new correlation has been proposed to predict the thermal conductivity of the nanolubricants with a R2 value of 0.9992. A combination of concentration and temperature (1.5783 vol% and 72.5695 °C) yielded to the maximum optimal thermal conductivity of 0.204526 Wm−1 K−1. In addition, multilayer perceptron, a type of neural network model, has been trained and tested to predict the thermal conductivity of the nanolubricants. Experiments have revealed that the ANN model consisting of only 10 hidden neurons has been able to achieve an average R2 of 0.98567 and RMSE of 0.02463 thereby establishing its ingenuity. Comparatively, it turned out that the RSM model was slightly more accurate in predicting thermal conductivity than the ANN model.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.50
自引率
9.10%
发文量
577
审稿时长
3.8 months
期刊介绍: Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews. The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.
期刊最新文献
EDITORIAL 2025: Journal of Thermal Analysis and Calorimetry Preparation and properties of DAP-4@LLM-105 micro-nano core–shell structures Catalytic upgrading of oil products generated by retorting Dachengzi oil shale over different catalysts Solidification effect of MXene nano-enhanced phase change material on 2E’s analysis of latent heat thermal energy storage The disassembly analysis and thermal runaway characteristics of NCM811 family battery cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1