R. Julius, M. Z. K. Zulkifpeli, A-B. M. A. Ibrahim
{"title":"Broadband Squeezed States in Two-Octave Single-Mode Multichannel Waveguide Systems","authors":"R. Julius, M. Z. K. Zulkifpeli, A-B. M. A. Ibrahim","doi":"10.1007/s10773-025-05911-z","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigates the properties of broadband squeezed states in a two-octave system comprising single-mode nonlinear waveguides with second-order nonlinearity. By examining various input state configurations, the study investigates squeezing features across the first, second, and fourth harmonic generations using semi-analytically phase space representation. In the first octave, all channels exhibit stable squeezing at the fundamental frequency, particularly when initialized in coherent states. The second-octave channels show robust squeezing at the second harmonic, with the central channel demonstrating optimal performance. Higher harmonic frequencies reveal that higher initial states in the first octave amplify squeezing, emphasizing the cumulative effect of nonlinear interactions. These findings highlight the importance of input state configuration and coupling conditions in optimizing squeezing performance and may provide valuable insights for advancements in quantum optics applications. </p></div>","PeriodicalId":597,"journal":{"name":"International Journal of Theoretical Physics","volume":"64 2","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10773-025-05911-z","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigates the properties of broadband squeezed states in a two-octave system comprising single-mode nonlinear waveguides with second-order nonlinearity. By examining various input state configurations, the study investigates squeezing features across the first, second, and fourth harmonic generations using semi-analytically phase space representation. In the first octave, all channels exhibit stable squeezing at the fundamental frequency, particularly when initialized in coherent states. The second-octave channels show robust squeezing at the second harmonic, with the central channel demonstrating optimal performance. Higher harmonic frequencies reveal that higher initial states in the first octave amplify squeezing, emphasizing the cumulative effect of nonlinear interactions. These findings highlight the importance of input state configuration and coupling conditions in optimizing squeezing performance and may provide valuable insights for advancements in quantum optics applications.
期刊介绍:
International Journal of Theoretical Physics publishes original research and reviews in theoretical physics and neighboring fields. Dedicated to the unification of the latest physics research, this journal seeks to map the direction of future research by original work in traditional physics like general relativity, quantum theory with relativistic quantum field theory,as used in particle physics, and by fresh inquiry into quantum measurement theory, and other similarly fundamental areas, e.g. quantum geometry and quantum logic, etc.