Twenty-Seven-Day Zonal Wind Fluctuations in the Troposphere and Lower Stratosphere under the Influence of Solar Activity

IF 0.5 4区 物理与天体物理 Q4 ASTRONOMY & ASTROPHYSICS Kinematics and Physics of Celestial Bodies Pub Date : 2025-02-14 DOI:10.3103/S0884591325010052
I. G. Zakharov, L. F. Chernogor
{"title":"Twenty-Seven-Day Zonal Wind Fluctuations in the Troposphere and Lower Stratosphere under the Influence of Solar Activity","authors":"I. G. Zakharov,&nbsp;L. F. Chernogor","doi":"10.3103/S0884591325010052","DOIUrl":null,"url":null,"abstract":"<p>Longitudinal, latitudinal, and altitudinal features of the zonal wind in the Northern Hemisphere under the influence of 27-day variations of solar activity (SA) were studied. The research aims to improve the accuracy of weather forecasts and deepening our knowledge about dynamic processes of the interaction of atmospheric layers. Zonal wind data by 5° latitude from the website https://psn.noaa.gov at the longitudes of Europe and North America from 15 altitude levels (from 1000 to 10 hPa) and SA data from the website https://www-app3.gfz-potsdam.de were used. Twenty high-amplitude 27-day SA cycles during the decline phase of the 23rd 11-year solar cycle from 2002 to 2004 were studied. The average 27-day wind changes for each latitude and altitude are calculated by the superposed epoch analysis separately for the winter and summer seasons. For the first time, 27-day latitudinal and altitudinal variations of zonal wind with an amplitude of ~8 m/s, capable of influencing the weather in the extratropical atmosphere, were established. Despite the significant difference in the background wind field in winter and summer, the response of the wind field to SA influence is similar for both seasons. The maximum wind changes occur in the southern part of the polar atmospheric cell and the northern part of the Ferrell cell (50°–70° N) and gradually decrease in magnitude to the south and north. Wind changes are many times smaller in the tropical troposphere. At the boundaries of the global circulation cells, the direction of disturbed wind changes to the opposite. Changes in the position of jet streams by more than 1° in latitude and changes in the size of atmospheric circulation cells are also observed. In terms of height, the largest changes in the wind at all latitudes occur in the upper troposphere. There is a close relationship between the magnitude of the perturbed wind and changes in the tropopause height. The impact is realized through two-way dynamic stratospheric-tropospheric interaction, primarily in the area of the polar night jet and polar front jet stream. The presence of significant wind changes for the summer season indicates an important role not only of planetary-scale Rossby waves but also of shorter-wavelength waves. At the same time, their upward propagation can be ensured by nonlinear interaction between them.</p>","PeriodicalId":681,"journal":{"name":"Kinematics and Physics of Celestial Bodies","volume":"41 1","pages":"14 - 25"},"PeriodicalIF":0.5000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kinematics and Physics of Celestial Bodies","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.3103/S0884591325010052","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Longitudinal, latitudinal, and altitudinal features of the zonal wind in the Northern Hemisphere under the influence of 27-day variations of solar activity (SA) were studied. The research aims to improve the accuracy of weather forecasts and deepening our knowledge about dynamic processes of the interaction of atmospheric layers. Zonal wind data by 5° latitude from the website https://psn.noaa.gov at the longitudes of Europe and North America from 15 altitude levels (from 1000 to 10 hPa) and SA data from the website https://www-app3.gfz-potsdam.de were used. Twenty high-amplitude 27-day SA cycles during the decline phase of the 23rd 11-year solar cycle from 2002 to 2004 were studied. The average 27-day wind changes for each latitude and altitude are calculated by the superposed epoch analysis separately for the winter and summer seasons. For the first time, 27-day latitudinal and altitudinal variations of zonal wind with an amplitude of ~8 m/s, capable of influencing the weather in the extratropical atmosphere, were established. Despite the significant difference in the background wind field in winter and summer, the response of the wind field to SA influence is similar for both seasons. The maximum wind changes occur in the southern part of the polar atmospheric cell and the northern part of the Ferrell cell (50°–70° N) and gradually decrease in magnitude to the south and north. Wind changes are many times smaller in the tropical troposphere. At the boundaries of the global circulation cells, the direction of disturbed wind changes to the opposite. Changes in the position of jet streams by more than 1° in latitude and changes in the size of atmospheric circulation cells are also observed. In terms of height, the largest changes in the wind at all latitudes occur in the upper troposphere. There is a close relationship between the magnitude of the perturbed wind and changes in the tropopause height. The impact is realized through two-way dynamic stratospheric-tropospheric interaction, primarily in the area of the polar night jet and polar front jet stream. The presence of significant wind changes for the summer season indicates an important role not only of planetary-scale Rossby waves but also of shorter-wavelength waves. At the same time, their upward propagation can be ensured by nonlinear interaction between them.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Kinematics and Physics of Celestial Bodies
Kinematics and Physics of Celestial Bodies ASTRONOMY & ASTROPHYSICS-
CiteScore
0.90
自引率
40.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Kinematics and Physics of Celestial Bodies is an international peer reviewed journal that publishes original regular and review papers on positional and theoretical astronomy, Earth’s rotation and geodynamics, dynamics and physics of bodies of the Solar System, solar physics, physics of stars and interstellar medium, structure and dynamics of the Galaxy, extragalactic astronomy, atmospheric optics and astronomical climate, instruments and devices, and mathematical processing of astronomical information. The journal welcomes manuscripts from all countries in the English or Russian language.
期刊最新文献
Evaluating Promethium Abundance in the Atmospheres of Magnetically Peculiar Star HD 25 354 Electromagnetic Coupling of Geospheres: 1. Disturbances in the Lower Ionosphere Twenty-Seven-Day Zonal Wind Fluctuations in the Troposphere and Lower Stratosphere under the Influence of Solar Activity Development of Planetary Research in Kharkiv in the Context of the Activity of Academician M.P. Barabashov Comparison of Direct Magnetic Field Measurements in a Sunspot by Ten Spectral Lines of Fe I, Fe II, Ti I, and Ti II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1