Hybrid feature-based moving cast shadow detection

IF 1.5 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE IET Computer Vision Pub Date : 2024-12-13 DOI:10.1049/cvi2.12328
Jiangyan Dai, Huihui Zhang, Jin Gao, Chunlei Chen, Yugen Yi
{"title":"Hybrid feature-based moving cast shadow detection","authors":"Jiangyan Dai,&nbsp;Huihui Zhang,&nbsp;Jin Gao,&nbsp;Chunlei Chen,&nbsp;Yugen Yi","doi":"10.1049/cvi2.12328","DOIUrl":null,"url":null,"abstract":"<p>The accurate detection of moving objects is essential in various applications of artificial intelligence, particularly in the field of intelligent surveillance systems. However, the moving cast shadow detection significantly decreases the precision of moving object detection because they share similar motion characteristics. To address the issue, the authors propose an innovative approach to detect moving cast shadows by combining the hybrid feature with a broad learning system (BLS). The approach involves extracting low-level features from the input and background images based on colour constancy and texture consistency principles that are shown to be highly effective in moving cast shadow detection. The authors then utilise the BLS to create a hybrid feature and BLS uses the extracted low-level features as input instead of the original data. BLS is an innovative form of deep learning that can map input to feature nodes and further enhance them by enhancement nodes, resulting in more compact features for classification. Finally, the authors develop an efficient and straightforward post-processing technique to improve the accuracy of moving object detection. To evaluate the effectiveness and generalisation ability, the authors conduct extensive experiments on public ATON-CVRR and CDnet datasets to verify the superior performance of our method by comparing with representative approaches.</p>","PeriodicalId":56304,"journal":{"name":"IET Computer Vision","volume":"19 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cvi2.12328","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computer Vision","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cvi2.12328","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The accurate detection of moving objects is essential in various applications of artificial intelligence, particularly in the field of intelligent surveillance systems. However, the moving cast shadow detection significantly decreases the precision of moving object detection because they share similar motion characteristics. To address the issue, the authors propose an innovative approach to detect moving cast shadows by combining the hybrid feature with a broad learning system (BLS). The approach involves extracting low-level features from the input and background images based on colour constancy and texture consistency principles that are shown to be highly effective in moving cast shadow detection. The authors then utilise the BLS to create a hybrid feature and BLS uses the extracted low-level features as input instead of the original data. BLS is an innovative form of deep learning that can map input to feature nodes and further enhance them by enhancement nodes, resulting in more compact features for classification. Finally, the authors develop an efficient and straightforward post-processing technique to improve the accuracy of moving object detection. To evaluate the effectiveness and generalisation ability, the authors conduct extensive experiments on public ATON-CVRR and CDnet datasets to verify the superior performance of our method by comparing with representative approaches.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在人工智能的各种应用中,尤其是在智能监控系统领域,准确检测移动物体至关重要。然而,移动投影检测会大大降低移动物体检测的精度,因为它们具有相似的运动特征。为了解决这个问题,作者提出了一种创新方法,通过将混合特征与广泛学习系统(BLS)相结合来检测移动投影。该方法基于色彩恒定性和纹理一致性原理,从输入图像和背景图像中提取低级特征,这些特征在移动投影检测中非常有效。然后,作者利用 BLS 创建混合特征,BLS 将提取的低级特征作为输入,而不是原始数据。BLS 是深度学习的一种创新形式,它可以将输入映射到特征节点,并通过增强节点进一步增强,从而获得更紧凑的分类特征。最后,作者开发了一种高效、直接的后处理技术,以提高移动物体检测的准确性。为了评估该方法的有效性和泛化能力,作者在公开的 ATON-CVRR 和 CDnet 数据集上进行了大量实验,通过与具有代表性的方法进行比较,验证了我们的方法的优越性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IET Computer Vision
IET Computer Vision 工程技术-工程:电子与电气
CiteScore
3.30
自引率
11.80%
发文量
76
审稿时长
3.4 months
期刊介绍: IET Computer Vision seeks original research papers in a wide range of areas of computer vision. The vision of the journal is to publish the highest quality research work that is relevant and topical to the field, but not forgetting those works that aim to introduce new horizons and set the agenda for future avenues of research in computer vision. IET Computer Vision welcomes submissions on the following topics: Biologically and perceptually motivated approaches to low level vision (feature detection, etc.); Perceptual grouping and organisation Representation, analysis and matching of 2D and 3D shape Shape-from-X Object recognition Image understanding Learning with visual inputs Motion analysis and object tracking Multiview scene analysis Cognitive approaches in low, mid and high level vision Control in visual systems Colour, reflectance and light Statistical and probabilistic models Face and gesture Surveillance Biometrics and security Robotics Vehicle guidance Automatic model aquisition Medical image analysis and understanding Aerial scene analysis and remote sensing Deep learning models in computer vision Both methodological and applications orientated papers are welcome. Manuscripts submitted are expected to include a detailed and analytical review of the literature and state-of-the-art exposition of the original proposed research and its methodology, its thorough experimental evaluation, and last but not least, comparative evaluation against relevant and state-of-the-art methods. Submissions not abiding by these minimum requirements may be returned to authors without being sent to review. Special Issues Current Call for Papers: Computer Vision for Smart Cameras and Camera Networks - https://digital-library.theiet.org/files/IET_CVI_SC.pdf Computer Vision for the Creative Industries - https://digital-library.theiet.org/files/IET_CVI_CVCI.pdf
期刊最新文献
A Review of Multi-Object Tracking in Recent Times TAPCNet: Tactile-Assisted Point Cloud Completion Network via Iterative Fusion Strategy Generating Transferable Adversarial Point Clouds via Autoencoders for 3D Object Classification A New Large-Scale Dataset for Marine Vessel Re-Identification Based on Swin Transformer Network in Ocean Surveillance Scenario Feature-Level Compensation and Alignment for Visible-Infrared Person Re-Identification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1