Do Whale Sharks Select for Specific Environments to Give Birth?

IF 2.3 2区 生物学 Q2 ECOLOGY Ecology and Evolution Pub Date : 2025-02-16 DOI:10.1002/ece3.70930
Freya C. Womersley, Matt J. Waller, David W. Sims
{"title":"Do Whale Sharks Select for Specific Environments to Give Birth?","authors":"Freya C. Womersley,&nbsp;Matt J. Waller,&nbsp;David W. Sims","doi":"10.1002/ece3.70930","DOIUrl":null,"url":null,"abstract":"<p>Neonate whale sharks &lt; 1.5 m in length are rarely encountered, with approximately 35 sightings recorded globally between 1970 and 2020. Although potentially pregnant females seem to frequent certain sites, parturition areas are unknown, and most neonates have been sighted opportunistically in offshore environments, suggesting nursery habitat may occur in remote parts of the ocean. Here, documented accounts of neonate whale sharks with corresponding locations were mapped in relation to oceanography to identify whether there are commonalities in where they occur. Results show that locations of neonate sightings coincide with permanent oxygen minimum zones (OMZs)—with associated high surface chlorophyll-a (Chl-a) and low oxygen at depth—more often than would be expected by random chance. Two main hypotheses are proposed to explain this apparent association: (i) adult female whale sharks selectively pup in waters adjacent to low oxygen regions offering a proximate refuge from oceanic predators as well as enhanced foraging opportunities, or that (ii) pupping occurs randomly in the open ocean but that OMZs restrict neonates to shallower surface waters where they are more frequently encountered by humans than elsewhere. Testing both hypotheses requires more data on the relationship between whale shark movement ecology and dissolved oxygen concentrations. As a first step, a model predicts the highest likelihood of neonates occurring in waters above OMZs, focussed around intermediate Chl-a regions at the boundaries of highly productive upwelling systems. These areas could be the focus of future, more targeted studies. Here, biologging devices measuring in situ oxygen concentrations will be useful for exploring how different life stages interact with OMZs, which are expanding due to climate-driven deoxygenation. What this might mean for neonate whale shark conservation in future warmer oceans remains an open question.</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":"15 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece3.70930","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece3.70930","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neonate whale sharks < 1.5 m in length are rarely encountered, with approximately 35 sightings recorded globally between 1970 and 2020. Although potentially pregnant females seem to frequent certain sites, parturition areas are unknown, and most neonates have been sighted opportunistically in offshore environments, suggesting nursery habitat may occur in remote parts of the ocean. Here, documented accounts of neonate whale sharks with corresponding locations were mapped in relation to oceanography to identify whether there are commonalities in where they occur. Results show that locations of neonate sightings coincide with permanent oxygen minimum zones (OMZs)—with associated high surface chlorophyll-a (Chl-a) and low oxygen at depth—more often than would be expected by random chance. Two main hypotheses are proposed to explain this apparent association: (i) adult female whale sharks selectively pup in waters adjacent to low oxygen regions offering a proximate refuge from oceanic predators as well as enhanced foraging opportunities, or that (ii) pupping occurs randomly in the open ocean but that OMZs restrict neonates to shallower surface waters where they are more frequently encountered by humans than elsewhere. Testing both hypotheses requires more data on the relationship between whale shark movement ecology and dissolved oxygen concentrations. As a first step, a model predicts the highest likelihood of neonates occurring in waters above OMZs, focussed around intermediate Chl-a regions at the boundaries of highly productive upwelling systems. These areas could be the focus of future, more targeted studies. Here, biologging devices measuring in situ oxygen concentrations will be useful for exploring how different life stages interact with OMZs, which are expanding due to climate-driven deoxygenation. What this might mean for neonate whale shark conservation in future warmer oceans remains an open question.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
3.80%
发文量
1027
审稿时长
3-6 weeks
期刊介绍: Ecology and Evolution is the peer reviewed journal for rapid dissemination of research in all areas of ecology, evolution and conservation science. The journal gives priority to quality research reports, theoretical or empirical, that develop our understanding of organisms and their diversity, interactions between them, and the natural environment. Ecology and Evolution gives prompt and equal consideration to papers reporting theoretical, experimental, applied and descriptive work in terrestrial and aquatic environments. The journal will consider submissions across taxa in areas including but not limited to micro and macro ecological and evolutionary processes, characteristics of and interactions between individuals, populations, communities and the environment, physiological responses to environmental change, population genetics and phylogenetics, relatedness and kin selection, life histories, systematics and taxonomy, conservation genetics, extinction, speciation, adaption, behaviour, biodiversity, species abundance, macroecology, population and ecosystem dynamics, and conservation policy.
期刊最新文献
Low Genetic Diversity and Complex Population Structure in Black Piranha (Serrasalmus rhombeus), a Key Amazonian Predator Integrating Human and Wildlife Dynamics in Co-Occurrence Modelling Unrecorded Butterfly Species and Potential Local Extinctions: The Role of Citizen Science and Sampling A Pantropical Analysis of Fire Impacts and Post-Fire Species Recovery of Plant Life Forms Unraveling the Influence of Structural Complexity, Environmental, and Geographic Factors on Multi-Trophic Biodiversity in Forested Landscapes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1