S. Alberti, A. Pollo, C. Cerrato, R. Viterbi, E. Balletto, L. Dapporto, S. Bonelli, I. Piccini
{"title":"Unrecorded Butterfly Species and Potential Local Extinctions: The Role of Citizen Science and Sampling","authors":"S. Alberti, A. Pollo, C. Cerrato, R. Viterbi, E. Balletto, L. Dapporto, S. Bonelli, I. Piccini","doi":"10.1002/ece3.71023","DOIUrl":null,"url":null,"abstract":"<p>Estimating species extinction risk is crucial to reverse biodiversity loss and to adopt proper conservation measures. Different sources may play a pivotal role in prioritising species conservation. Recently, citizen science demonstrated a substantial role, especially when it comes to butterflies. This study examines species records and richness in Aosta Valley, which represents one of the highest mountain areas in Europe. Through 30,351 data points from 1825 to 2022, the impact and efficiency of three groups of data sources were investigated: literature (i.e., publications and collections), sampling (butterfly experts' recording), and citizen science (open-source databases). The study also aims to assess the extinction potential of the butterflies in relation to functional traits. The results showed that even if there were significant differences in the number of records between the three sources, there were no significant differences for species recorded. Moreover, 2.9% of the butterfly community risks extinction, and it is related to some response traits. Indeed, extinction risks increase when the altitudinal range decreases and for multivoltines. In conclusion, citizen science has a strong impact on the amount of data and could be exploited to fill data gaps at low/medium altitudes. However, professional sampling is needed to focus on species no longer reported, and in particular on species that are difficult to identify, have specific distributions or particular traits (e.g., limited altitudinal range). Using different data sources, extinction risk estimation, and trait analysis, it is possible to prioritise studies on some species using different efforts (sampling and/or citizen sciences).</p>","PeriodicalId":11467,"journal":{"name":"Ecology and Evolution","volume":"15 2","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ece3.71023","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ece3.71023","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Estimating species extinction risk is crucial to reverse biodiversity loss and to adopt proper conservation measures. Different sources may play a pivotal role in prioritising species conservation. Recently, citizen science demonstrated a substantial role, especially when it comes to butterflies. This study examines species records and richness in Aosta Valley, which represents one of the highest mountain areas in Europe. Through 30,351 data points from 1825 to 2022, the impact and efficiency of three groups of data sources were investigated: literature (i.e., publications and collections), sampling (butterfly experts' recording), and citizen science (open-source databases). The study also aims to assess the extinction potential of the butterflies in relation to functional traits. The results showed that even if there were significant differences in the number of records between the three sources, there were no significant differences for species recorded. Moreover, 2.9% of the butterfly community risks extinction, and it is related to some response traits. Indeed, extinction risks increase when the altitudinal range decreases and for multivoltines. In conclusion, citizen science has a strong impact on the amount of data and could be exploited to fill data gaps at low/medium altitudes. However, professional sampling is needed to focus on species no longer reported, and in particular on species that are difficult to identify, have specific distributions or particular traits (e.g., limited altitudinal range). Using different data sources, extinction risk estimation, and trait analysis, it is possible to prioritise studies on some species using different efforts (sampling and/or citizen sciences).
期刊介绍:
Ecology and Evolution is the peer reviewed journal for rapid dissemination of research in all areas of ecology, evolution and conservation science. The journal gives priority to quality research reports, theoretical or empirical, that develop our understanding of organisms and their diversity, interactions between them, and the natural environment.
Ecology and Evolution gives prompt and equal consideration to papers reporting theoretical, experimental, applied and descriptive work in terrestrial and aquatic environments. The journal will consider submissions across taxa in areas including but not limited to micro and macro ecological and evolutionary processes, characteristics of and interactions between individuals, populations, communities and the environment, physiological responses to environmental change, population genetics and phylogenetics, relatedness and kin selection, life histories, systematics and taxonomy, conservation genetics, extinction, speciation, adaption, behaviour, biodiversity, species abundance, macroecology, population and ecosystem dynamics, and conservation policy.