Efficient Removal of Emerging Contaminant Sulfamethazine in Water by Fe2O3: Roles of Morphological Features and Oxygen Vacancies

IF 3.7 2区 化学 Q2 CHEMISTRY, APPLIED Applied Organometallic Chemistry Pub Date : 2025-02-16 DOI:10.1002/aoc.70062
Guangyu Wu, Geng Li, Jingyi Wang, Shilin Shi, Simeng Guo, Yuwei Pan, Ying Zhang, Jiangang Han, Weinan Xing
{"title":"Efficient Removal of Emerging Contaminant Sulfamethazine in Water by Fe2O3: Roles of Morphological Features and Oxygen Vacancies","authors":"Guangyu Wu,&nbsp;Geng Li,&nbsp;Jingyi Wang,&nbsp;Shilin Shi,&nbsp;Simeng Guo,&nbsp;Yuwei Pan,&nbsp;Ying Zhang,&nbsp;Jiangang Han,&nbsp;Weinan Xing","doi":"10.1002/aoc.70062","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The inability to recycle Fenton reagents and a narrow pH range restricts hematite (Fe<sub>2</sub>O<sub>3</sub>) application in the actual photo-Fenton system. The engineering of surface structures is identified as an effective approach for enhancing the photo-Fenton activity of the material. In this work, three different morphologies (nanosheet, cube, and ring) Fe<sub>2</sub>O<sub>3</sub> materials containing oxygen vacancies (OVs) were synthesized by hydrothermal method, and a novel system for the photo-Fenton degradation of sulfamethazine was examined. In the presence of oxalic acid, the Fe<sub>2</sub>O<sub>3</sub>/oxalic acid heterogeneous catalytic system demonstrated the in situ generation of H<sub>2</sub>O<sub>2</sub> and facilitated Fenton-like reactions. The as-prepared nanosheet-Fe<sub>2</sub>O<sub>3</sub> showed the highest photo-Fenton degradation efficiency. The free radical capture experiment was investigated by using different free radical sacrificial agents, and the results suggested that superoxide radicals were the principal active species involved. Ecotoxicity assessments utilizing toxicity prediction software assessed the reaction intermediates generated during sulfamethazine degradation via a quantitative structure–activity relationship method, indicating that these intermediates exhibited reduced developmental toxicity. The possible pathways of sulfamethazine degradation and mechanism for synergistic degradation sulfamethazine effect between Fe<sub>2</sub>O<sub>3</sub> and oxalic acid were proposed. This research presents an effective strategy for the design and synthesis of Fe<sub>2</sub>O<sub>3</sub> photocatalysts with various morphologies and oxygen vacancies, suitable for application in photo-Fenton catalysis and related environmental contexts.</p>\n </div>","PeriodicalId":8344,"journal":{"name":"Applied Organometallic Chemistry","volume":"39 3","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Organometallic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aoc.70062","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

The inability to recycle Fenton reagents and a narrow pH range restricts hematite (Fe2O3) application in the actual photo-Fenton system. The engineering of surface structures is identified as an effective approach for enhancing the photo-Fenton activity of the material. In this work, three different morphologies (nanosheet, cube, and ring) Fe2O3 materials containing oxygen vacancies (OVs) were synthesized by hydrothermal method, and a novel system for the photo-Fenton degradation of sulfamethazine was examined. In the presence of oxalic acid, the Fe2O3/oxalic acid heterogeneous catalytic system demonstrated the in situ generation of H2O2 and facilitated Fenton-like reactions. The as-prepared nanosheet-Fe2O3 showed the highest photo-Fenton degradation efficiency. The free radical capture experiment was investigated by using different free radical sacrificial agents, and the results suggested that superoxide radicals were the principal active species involved. Ecotoxicity assessments utilizing toxicity prediction software assessed the reaction intermediates generated during sulfamethazine degradation via a quantitative structure–activity relationship method, indicating that these intermediates exhibited reduced developmental toxicity. The possible pathways of sulfamethazine degradation and mechanism for synergistic degradation sulfamethazine effect between Fe2O3 and oxalic acid were proposed. This research presents an effective strategy for the design and synthesis of Fe2O3 photocatalysts with various morphologies and oxygen vacancies, suitable for application in photo-Fenton catalysis and related environmental contexts.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Organometallic Chemistry
Applied Organometallic Chemistry 化学-无机化学与核化学
CiteScore
7.80
自引率
10.30%
发文量
408
审稿时长
2.2 months
期刊介绍: All new compounds should be satisfactorily identified and proof of their structure given according to generally accepted standards. Structural reports, such as papers exclusively dealing with synthesis and characterization, analytical techniques, or X-ray diffraction studies of metal-organic or organometallic compounds will not be considered. The editors reserve the right to refuse without peer review any manuscript that does not comply with the aims and scope of the journal. Applied Organometallic Chemistry publishes Full Papers, Reviews, Mini Reviews and Communications of scientific research in all areas of organometallic and metal-organic chemistry involving main group metals, transition metals, lanthanides and actinides. All contributions should contain an explicit application of novel compounds, for instance in materials science, nano science, catalysis, chemical vapour deposition, metal-mediated organic synthesis, polymers, bio-organometallics, metallo-therapy, metallo-diagnostics and medicine. Reviews of books covering aspects of the fields of focus are also published.
期刊最新文献
Comparative Study of Conventional and Ultrasonic-Assisted Synthesis of Co(II)- and Cu(II)-Based MOFs for CO2 Adsorption Study of Alternative Current Conduction Mechanisms on the α-LiFeO2-Based Cathode Materials Comprehensive Exploration of Water-Soluble Schiff Base Complexes of Ni (II), Cu (II), Mn (II), and Ce (III): Electrochemical, Computational, and Biological Studies Synthesis, Characterization, and Application of MOF/COF Hybrid Composite as a Highly Active and Recyclable Catalyst for Multicomponent Synthesis of Chromeno[4,3-b]quinoline-6-ones Adsorptive Removal of Congo Red Dye From Aqueous Media Using Composite of Graphitic Carbon Nitride Nanosheet and the Biopolymer Alginate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1