{"title":"Optimal Flood Discharge Scheduling to Alleviate Vibration Under Gate Operational Rules","authors":"Zetai Yang, Suzhen Feng, Kaixiang Fu, Jinwen Wang","doi":"10.1111/jfr3.70015","DOIUrl":null,"url":null,"abstract":"<p>The concomitant vibration of flood discharge, which would cause structure damages to hydraulic infrastructure and thus incurs threats to nearby communities, has rarely been addressed yet cries for an effective solution in discharge scheduling of sluice gates. This work improves on the traditional practice (Model-I) that mainly aims to restrain start-up and shutdown actions of spillway gates with a new model (Model-II) that includes a flexible vibration damping rule, in which the sluice gates are grouped in priority to be sequentially committed, and in the same group, a reference gate is prioritised to enforce a uniform discharge from the active outlets and the gates are paired to ensure a symmetrical opening. The case studies in the Xiangjiaba Dam (XD) demonstrate the excellent adaptability of the model to gate opening patterns concluded with field experiments and site monitoring, and comparing the two models reveals that Model-II can enforce preferable operational rules to deliver safer discharge scheduling and potentially to reduce risks from the concomitant vibration of hydraulic facilities and the turbulent flow field around the dam during flood discharging, though leading to a much higher frequency of starting up and shutting down of sluice gates than the traditional Model-I.</p>","PeriodicalId":49294,"journal":{"name":"Journal of Flood Risk Management","volume":"18 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.70015","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flood Risk Management","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfr3.70015","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The concomitant vibration of flood discharge, which would cause structure damages to hydraulic infrastructure and thus incurs threats to nearby communities, has rarely been addressed yet cries for an effective solution in discharge scheduling of sluice gates. This work improves on the traditional practice (Model-I) that mainly aims to restrain start-up and shutdown actions of spillway gates with a new model (Model-II) that includes a flexible vibration damping rule, in which the sluice gates are grouped in priority to be sequentially committed, and in the same group, a reference gate is prioritised to enforce a uniform discharge from the active outlets and the gates are paired to ensure a symmetrical opening. The case studies in the Xiangjiaba Dam (XD) demonstrate the excellent adaptability of the model to gate opening patterns concluded with field experiments and site monitoring, and comparing the two models reveals that Model-II can enforce preferable operational rules to deliver safer discharge scheduling and potentially to reduce risks from the concomitant vibration of hydraulic facilities and the turbulent flow field around the dam during flood discharging, though leading to a much higher frequency of starting up and shutting down of sluice gates than the traditional Model-I.
期刊介绍:
Journal of Flood Risk Management provides an international platform for knowledge sharing in all areas related to flood risk. Its explicit aim is to disseminate ideas across the range of disciplines where flood related research is carried out and it provides content ranging from leading edge academic papers to applied content with the practitioner in mind.
Readers and authors come from a wide background and include hydrologists, meteorologists, geographers, geomorphologists, conservationists, civil engineers, social scientists, policy makers, insurers and practitioners. They share an interest in managing the complex interactions between the many skills and disciplines that underpin the management of flood risk across the world.