Establishment of an experimental system to analyse extracellular vesicles during apoplastic fungal pathogenesis

Nathaniel Hearfield, Dominik Brotherton, Zedi Gao, Jameel Inal, Henrik U. Stotz
{"title":"Establishment of an experimental system to analyse extracellular vesicles during apoplastic fungal pathogenesis","authors":"Nathaniel Hearfield,&nbsp;Dominik Brotherton,&nbsp;Zedi Gao,&nbsp;Jameel Inal,&nbsp;Henrik U. Stotz","doi":"10.1002/jex2.70029","DOIUrl":null,"url":null,"abstract":"<p>Phoma stem canker disease of oilseed rape (<i>Brassica napus</i>) is caused by the extracellular fungal pathogen <i>Leptosphaeria maculans</i>. Although this pathogen resides exclusively in apoplastic spaces surrounding plant cells, the significance of extracellular vesicles (EVs) has not been assessed. Here, we show a method to collect apoplastic fluids (AFs) from infected leaves or cotyledons for collection of EVs during the process of host colonisation. The 15,000 × <i>g</i> supernatants of AFs were shown to contain ribulose-bisphosphate carboxylase (RuBisCO) at 7 days post-inoculation with <i>L. maculans</i>, a protein that was absent from unchallenged cotyledons. RuBisCO release coincided with the switch from biotrophy to necrotrophy, suggesting the involvement of host cell death. However, RuBisCO release did not differ between compatible and incompatible interactions, suggesting necrotrophic host cell death might not be the only process involved. EVs were also collected from axenic fungal cultures and characterised for their particle size distribution using nanoparticle tracking analysis and transmission electron microscopy. The protein composition of EV-enriched fractions was analysed using SDS-PAGE and proteomics. Enrichment analysis of gene ontology terms provided evidence for involvement of glucan and chitin metabolism as well as catalase and peptidase activities. Most of the proteins identified have previously been found in EV studies and/or EV databases, and for most of the proteins evidence was found for an involvement in pathogenicity/virulence.</p>","PeriodicalId":73747,"journal":{"name":"Journal of extracellular biology","volume":"4 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jex2.70029","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of extracellular biology","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jex2.70029","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Phoma stem canker disease of oilseed rape (Brassica napus) is caused by the extracellular fungal pathogen Leptosphaeria maculans. Although this pathogen resides exclusively in apoplastic spaces surrounding plant cells, the significance of extracellular vesicles (EVs) has not been assessed. Here, we show a method to collect apoplastic fluids (AFs) from infected leaves or cotyledons for collection of EVs during the process of host colonisation. The 15,000 × g supernatants of AFs were shown to contain ribulose-bisphosphate carboxylase (RuBisCO) at 7 days post-inoculation with L. maculans, a protein that was absent from unchallenged cotyledons. RuBisCO release coincided with the switch from biotrophy to necrotrophy, suggesting the involvement of host cell death. However, RuBisCO release did not differ between compatible and incompatible interactions, suggesting necrotrophic host cell death might not be the only process involved. EVs were also collected from axenic fungal cultures and characterised for their particle size distribution using nanoparticle tracking analysis and transmission electron microscopy. The protein composition of EV-enriched fractions was analysed using SDS-PAGE and proteomics. Enrichment analysis of gene ontology terms provided evidence for involvement of glucan and chitin metabolism as well as catalase and peptidase activities. Most of the proteins identified have previously been found in EV studies and/or EV databases, and for most of the proteins evidence was found for an involvement in pathogenicity/virulence.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extracellular Vesicles From Follicular Fluid in Infertile Women: Size, Morphology and miRNA Content Analysis Establishment of an experimental system to analyse extracellular vesicles during apoplastic fungal pathogenesis Comparison of Methods for Isolation and Characterization of Total and Astrocyte-Enriched Extracellular Vesicles From Human Serum and Plasma Molecular insights into the unique properties of the blood-circulating proteasome Mesenchymal stem cell-derived exosomes mitigate amyloid β-induced retinal toxicity: Insights from rat model and cellular studies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1