Deciphering the Molecular Mechanisms of HAART-Induced Hepatotoxicity

IF 3.2 3区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Biochemical and Molecular Toxicology Pub Date : 2025-02-17 DOI:10.1002/jbt.70174
Devaraj Ezhilarasan, Munusamy Karthick, Muthusethupathi Sharmila, Somasundaram Sanjay, Uthirappan Mani
{"title":"Deciphering the Molecular Mechanisms of HAART-Induced Hepatotoxicity","authors":"Devaraj Ezhilarasan,&nbsp;Munusamy Karthick,&nbsp;Muthusethupathi Sharmila,&nbsp;Somasundaram Sanjay,&nbsp;Uthirappan Mani","doi":"10.1002/jbt.70174","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Highly active antiretroviral therapy (HAART), consisting of three or more antiretroviral drugs, is recommended for patients with HIV infection. HAART effectively reduces HIV RNA levels, lowers the risk of opportunistic infections, and improves immune function and survival rates. However, it is also associated with an increased risk of liver injury in HIV-infected individuals. This review aims to summarize the mechanisms underlying HAART-induced liver injury. A comprehensive search was conducted in PubMed and EMBASE using keywords such as “Antiretroviral/ARV drugs and drug-induced liver injury (DILI),” “HAART and DILI,” “Antiretroviral therapy and DILI,” and “HIV infection and DILI.” Relevant papers published before March 2024 were included. Experimental studies have demonstrated that zidovudine and efavirenz can cause structural alterations in mitochondria, impair the respiratory chain, generate free radicals, and deplete mitochondrial DNA, leading to oxidative and endoplasmic reticulum stress, as well as the accumulation of advanced glycation end products in liver tissue. Zidovudine disrupts lipid homeostasis by increasing fatty acid synthesis and reducing metabolism. Efavirenz and its metabolite, 8-hydroxyefavirenz, induce hepatocellular death and activate proapoptotic markers through c-Jun N-terminal kinase signaling. Additionally, lamivudine has been shown to induce liver injury and oxidative stress in rats. Clinically, approximately 50% of HIV patients on HAART regimens containing non-nucleoside reverse transcriptase inhibitors experience mild to moderate liver injury. HAART regimens that include efavirenz, lamivudine, and tenofovir impair glucose and lipid homeostasis in rats, highlighting the need for caution in HIV patients with fatty liver disease. Patients with viral hepatitis coinfection, those taking antitubercular drugs or cotrimoxazole, and those on nevirapine-containing regimens are at particularly high risk. Regular monitoring of liver function is essential to prevent liver damage associated with HAART in HIV-infected patients. While HAART significantly improves survival rates in HIV patients, it also poses a considerable risk of liver injury, necessitating careful monitoring and management.</p></div>","PeriodicalId":15151,"journal":{"name":"Journal of Biochemical and Molecular Toxicology","volume":"39 2","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biochemical and Molecular Toxicology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jbt.70174","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Highly active antiretroviral therapy (HAART), consisting of three or more antiretroviral drugs, is recommended for patients with HIV infection. HAART effectively reduces HIV RNA levels, lowers the risk of opportunistic infections, and improves immune function and survival rates. However, it is also associated with an increased risk of liver injury in HIV-infected individuals. This review aims to summarize the mechanisms underlying HAART-induced liver injury. A comprehensive search was conducted in PubMed and EMBASE using keywords such as “Antiretroviral/ARV drugs and drug-induced liver injury (DILI),” “HAART and DILI,” “Antiretroviral therapy and DILI,” and “HIV infection and DILI.” Relevant papers published before March 2024 were included. Experimental studies have demonstrated that zidovudine and efavirenz can cause structural alterations in mitochondria, impair the respiratory chain, generate free radicals, and deplete mitochondrial DNA, leading to oxidative and endoplasmic reticulum stress, as well as the accumulation of advanced glycation end products in liver tissue. Zidovudine disrupts lipid homeostasis by increasing fatty acid synthesis and reducing metabolism. Efavirenz and its metabolite, 8-hydroxyefavirenz, induce hepatocellular death and activate proapoptotic markers through c-Jun N-terminal kinase signaling. Additionally, lamivudine has been shown to induce liver injury and oxidative stress in rats. Clinically, approximately 50% of HIV patients on HAART regimens containing non-nucleoside reverse transcriptase inhibitors experience mild to moderate liver injury. HAART regimens that include efavirenz, lamivudine, and tenofovir impair glucose and lipid homeostasis in rats, highlighting the need for caution in HIV patients with fatty liver disease. Patients with viral hepatitis coinfection, those taking antitubercular drugs or cotrimoxazole, and those on nevirapine-containing regimens are at particularly high risk. Regular monitoring of liver function is essential to prevent liver damage associated with HAART in HIV-infected patients. While HAART significantly improves survival rates in HIV patients, it also poses a considerable risk of liver injury, necessitating careful monitoring and management.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.80
自引率
2.80%
发文量
277
审稿时长
6-12 weeks
期刊介绍: The Journal of Biochemical and Molecular Toxicology is an international journal that contains original research papers, rapid communications, mini-reviews, and book reviews, all focusing on the molecular mechanisms of action and detoxication of exogenous and endogenous chemicals and toxic agents. The scope includes effects on the organism at all stages of development, on organ systems, tissues, and cells as well as on enzymes, receptors, hormones, and genes. The biochemical and molecular aspects of uptake, transport, storage, excretion, lactivation and detoxication of drugs, agricultural, industrial and environmental chemicals, natural products and food additives are all subjects suitable for publication. Of particular interest are aspects of molecular biology related to biochemical toxicology. These include studies of the expression of genes related to detoxication and activation enzymes, toxicants with modes of action involving effects on nucleic acids, gene expression and protein synthesis, and the toxicity of products derived from biotechnology.
期刊最新文献
Curcumin Restrains TGF-β2-Induced Proliferation, Migration, Invasion and EMT in Lens Epithelial Cells by Regulating FGF7/ZEB1 Axis Mitochondrial Quality Control and Melatonin: A Strategy Against Myocardial Injury Sarsasapogenin Inhibits HCT116 and Caco-2 Cell Malignancy and Tumor Growth in a Xenograft Mouse Model of Colorectal Cancer by Inactivating MAPK Signaling Protective Effects of Galangin Against Cyclophosphamide-Induced Cardiotoxicity via Suppressing NF-κB and Improving Mitochondrial Biogenesis Issue information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1