Advanced pH Indicators Consisting of BODIPY and Coumarin Fluorophores with a Guanidinyl Structure Capable of Methanol Recognition

IF 2.8 4区 化学 Q1 CHEMISTRY, ORGANIC Asian Journal of Organic Chemistry Pub Date : 2025-02-01 DOI:10.1002/ajoc.202400605
Dr. Tomohiro Umeno , Mio Tanaka , Moeka Fujihara , Naoko Iizuka , Shota Matsumoto , Dr. Kazuteru Usui , Prof. Satoru Karasawa
{"title":"Advanced pH Indicators Consisting of BODIPY and Coumarin Fluorophores with a Guanidinyl Structure Capable of Methanol Recognition","authors":"Dr. Tomohiro Umeno ,&nbsp;Mio Tanaka ,&nbsp;Moeka Fujihara ,&nbsp;Naoko Iizuka ,&nbsp;Shota Matsumoto ,&nbsp;Dr. Kazuteru Usui ,&nbsp;Prof. Satoru Karasawa","doi":"10.1002/ajoc.202400605","DOIUrl":null,"url":null,"abstract":"<div><div>Guanidine is strongly basic and has a high molecular recognition ability. We previously developed a guanidine‐bearing benzoquinoline for the fluorescence detection of MeOH by exploiting the strong basicity of guanidine. The benzoquinoline fluorophore quantitatively detected MeOH in EtOH with moderate sensitivity and a limit of detection (LOD) of 16.5 %. In this study, we developed two guanidinyl boron dipyrromethene (BODIPY) and two guanidinyl coumarin fluorophores. These fluorophores have higher molar extinction coefficients (ϵ) than those of benzoquinolines, which suggests that they could have improved detection sensitivity. The BODIPY fluorophores exhibited acid‐responsive turn‐on fluorescence for MeOH, similar to the benzoquinoline fluorophore. Their high ϵ values led to an enhanced MeOH detection sensitivity of 1.3 % in EtOH. The coumarin derivatives exhibited acid‐responsive turn‐off fluorescence. In addition, the absorbance spectral shift of the protonated and neutral forms of coumarin enabled the ratiometric detection of MeOH (LOD=0.85 % and 0.57 %, respectively). This study demonstrates the utility of guanidine‐based fluorophores in molecular recognition and promotes the development of similar fluorophores in analytical chemistry.</div></div>","PeriodicalId":130,"journal":{"name":"Asian Journal of Organic Chemistry","volume":"14 2","pages":"Article e202400605"},"PeriodicalIF":2.8000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asian Journal of Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S2193580724004586","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

Abstract

Guanidine is strongly basic and has a high molecular recognition ability. We previously developed a guanidine‐bearing benzoquinoline for the fluorescence detection of MeOH by exploiting the strong basicity of guanidine. The benzoquinoline fluorophore quantitatively detected MeOH in EtOH with moderate sensitivity and a limit of detection (LOD) of 16.5 %. In this study, we developed two guanidinyl boron dipyrromethene (BODIPY) and two guanidinyl coumarin fluorophores. These fluorophores have higher molar extinction coefficients (ϵ) than those of benzoquinolines, which suggests that they could have improved detection sensitivity. The BODIPY fluorophores exhibited acid‐responsive turn‐on fluorescence for MeOH, similar to the benzoquinoline fluorophore. Their high ϵ values led to an enhanced MeOH detection sensitivity of 1.3 % in EtOH. The coumarin derivatives exhibited acid‐responsive turn‐off fluorescence. In addition, the absorbance spectral shift of the protonated and neutral forms of coumarin enabled the ratiometric detection of MeOH (LOD=0.85 % and 0.57 %, respectively). This study demonstrates the utility of guanidine‐based fluorophores in molecular recognition and promotes the development of similar fluorophores in analytical chemistry.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.70
自引率
3.70%
发文量
372
期刊介绍: Organic chemistry is the fundamental science that stands at the heart of chemistry, biology, and materials science. Research in these areas is vigorous and truly international, with three major regions making almost equal contributions: America, Europe and Asia. Asia now has its own top international organic chemistry journal—the Asian Journal of Organic Chemistry (AsianJOC) The AsianJOC is designed to be a top-ranked international research journal and publishes primary research as well as critical secondary information from authors across the world. The journal covers organic chemistry in its entirety. Authors and readers come from academia, the chemical industry, and government laboratories.
期刊最新文献
Cover Feature: Microcrystalline Cellulose and Cellulose Nanocrystals: Ecofriendly and Sustainable Support Materials in Heterogeneous Nanocatalysis for Green Organic Transformations (Asian J. Org. Chem. 2/2025) Front Cover: Biosynthesis of Depsides, Depsidones, and Diphenyl Ethers from Fungi and Lichens (Asian J. Org. Chem. 2/2025) TEMPO‐Mediated Cross‐Dehydrogenative Coupling for the Synthesis of Bis(indolyl)methanes Visible‐Light Driven Photocatalytic Strategies for the Synthesis of Pyrrolines Solvent Dependent Selectivity in the Synthesis of 1,2‐Disubstituted and 2‐Substituted Benzimidazoles by Dehydrogenative Coupling Reactions with Ruthenium‐Polyoxoniobate Catalysts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1