Investigating the GHG emissions, air pollution and public health impacts from China's aluminium industry: Historical variations and future mitigation potential.

IF 8 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Journal of Environmental Management Pub Date : 2025-03-01 Epub Date: 2025-02-15 DOI:10.1016/j.jenvman.2025.124530
Xueyuan Zhu, Qiang Jin
{"title":"Investigating the GHG emissions, air pollution and public health impacts from China's aluminium industry: Historical variations and future mitigation potential.","authors":"Xueyuan Zhu, Qiang Jin","doi":"10.1016/j.jenvman.2025.124530","DOIUrl":null,"url":null,"abstract":"<p><p>China's aluminium industry, contributing 50% of the global aluminium sector's GHG emissions, is undergoing technology upgrading and energy transition. Facing the dual challenges of carbon neutrality and air pollution control, it is necessary to investigate the GHG emissions and air quality related health risks from aluminium production. Here, we traced the spatiotemporal GHG and air pollutant emissions from China's aluminium industry since 2010. We found that the annual GHG emissions increased from 313 Mt CO<sub>2</sub> to 621 Mt CO<sub>2</sub> over a decade, while air pollutant emissions decreased by 42.9%-68.6%. Through regional chemical transport model and the exposure-response model, we quantified the regional health risks, finding that the mortalities fell from 52,900 to 36,500 with complex spatial heterogeneity. Through emission driving force analysis and aluminium related policy review, we demonstrated that China's air pollution control policy, aluminium capacity migration plan and energy transition plan have a mitigation effect on the emissions and health risks. Moreover, we proposed six mitigation measures and investigated the future mitigation potential through scenario analysis. We found that the critical criteria for carbon neutrality should be natural gas and hydrogen dominated alumina refining, 100% electrolysis decarbonisation, 65% recycled aluminium ratio, 80% penetration rate of inert anodes and 50 Mt CO<sub>2</sub> capture. As a co-benefit, the emissions of SO<sub>2</sub>, NO<sub>x</sub>, PM<sub>2.5</sub> and PM<sub>10</sub> can be reduced by up to 97.1%, 97.0%, 89.6%, and 90.5%. These findings provide new insights into carbon neutrality and air pollution mitigation for the aluminium industry.</p>","PeriodicalId":356,"journal":{"name":"Journal of Environmental Management","volume":"376 ","pages":"124530"},"PeriodicalIF":8.0000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Management","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jenvman.2025.124530","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

China's aluminium industry, contributing 50% of the global aluminium sector's GHG emissions, is undergoing technology upgrading and energy transition. Facing the dual challenges of carbon neutrality and air pollution control, it is necessary to investigate the GHG emissions and air quality related health risks from aluminium production. Here, we traced the spatiotemporal GHG and air pollutant emissions from China's aluminium industry since 2010. We found that the annual GHG emissions increased from 313 Mt CO2 to 621 Mt CO2 over a decade, while air pollutant emissions decreased by 42.9%-68.6%. Through regional chemical transport model and the exposure-response model, we quantified the regional health risks, finding that the mortalities fell from 52,900 to 36,500 with complex spatial heterogeneity. Through emission driving force analysis and aluminium related policy review, we demonstrated that China's air pollution control policy, aluminium capacity migration plan and energy transition plan have a mitigation effect on the emissions and health risks. Moreover, we proposed six mitigation measures and investigated the future mitigation potential through scenario analysis. We found that the critical criteria for carbon neutrality should be natural gas and hydrogen dominated alumina refining, 100% electrolysis decarbonisation, 65% recycled aluminium ratio, 80% penetration rate of inert anodes and 50 Mt CO2 capture. As a co-benefit, the emissions of SO2, NOx, PM2.5 and PM10 can be reduced by up to 97.1%, 97.0%, 89.6%, and 90.5%. These findings provide new insights into carbon neutrality and air pollution mitigation for the aluminium industry.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Environmental Management
Journal of Environmental Management 环境科学-环境科学
CiteScore
13.70
自引率
5.70%
发文量
2477
审稿时长
84 days
期刊介绍: The Journal of Environmental Management is a journal for the publication of peer reviewed, original research for all aspects of management and the managed use of the environment, both natural and man-made.Critical review articles are also welcome; submission of these is strongly encouraged.
期刊最新文献
Seaweed feed enhance the long-term recovery of bacterial community and carbon-nitrogen sequestration in eutrophic coastal wetland Microbial Fe(III) reduction across a pH gradient: The impacts on secondary mineralization and microbial community development Enhancing textile wastewater reuse: Integrating Fenton oxidation with membrane filtration The impact of noise on green open space value Flood resilience through hybrid deep learning: Advanced forecasting for Taipei's urban drainage system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1