Guangfei Qu, Guojun Liu, Chenyang Zhao, Zhishuncheng Li, Yingying Cai
{"title":"Electrochemical Removal Of Doxycycline Hydrochloride With Cerium-aluminum Catalytic Anode.","authors":"Guangfei Qu, Guojun Liu, Chenyang Zhao, Zhishuncheng Li, Yingying Cai","doi":"10.1002/chem.202404304","DOIUrl":null,"url":null,"abstract":"<p><p>Doxycycline hydrochloride (DOX) is a widely used broad-spectrum antibiotic that is challenging to degrade, leading to a series of environmental issues. In this study, a bimetallic oxide catalyst was synthesized through hydrothermal calcination followed by annealing. The catalytic carbon cloth anode was fabricated by bonding materials directly onto carbon cloth. Various characterization methods were employed to analyze the surface morphology, composition, and electrochemical properties of the electrodes. The materials exhibited rich surface morphology and exceptional electrochemical surface area. The catalyst primarily consisted of CeO2 and CeAlO3, demonstrating a 93.85% removal efficiency of DOX within 2 hours under optimized conditions. Even after seven consecutive degradation cycles, the DOX degradation rate remained at 82%, confirming the remarkable stability of the electrodes. The product distribution generated during the degradation of DOX was identified using LC-MS analysis, and a potential electrochemical degradation mechanism was proposed. Our results indicate that the bimetallic hybrid coordination significantly enhances the catalytic activity and electrochemical stability of the materials. This work offers a novel approach for preparing modified carbon cloth anodes with high catalytic activity and durability, laying a crucial foundation for the efficient degradation of the antibiotic DOX.</p>","PeriodicalId":144,"journal":{"name":"Chemistry - A European Journal","volume":" ","pages":"e202404304"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry - A European Journal","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/chem.202404304","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Doxycycline hydrochloride (DOX) is a widely used broad-spectrum antibiotic that is challenging to degrade, leading to a series of environmental issues. In this study, a bimetallic oxide catalyst was synthesized through hydrothermal calcination followed by annealing. The catalytic carbon cloth anode was fabricated by bonding materials directly onto carbon cloth. Various characterization methods were employed to analyze the surface morphology, composition, and electrochemical properties of the electrodes. The materials exhibited rich surface morphology and exceptional electrochemical surface area. The catalyst primarily consisted of CeO2 and CeAlO3, demonstrating a 93.85% removal efficiency of DOX within 2 hours under optimized conditions. Even after seven consecutive degradation cycles, the DOX degradation rate remained at 82%, confirming the remarkable stability of the electrodes. The product distribution generated during the degradation of DOX was identified using LC-MS analysis, and a potential electrochemical degradation mechanism was proposed. Our results indicate that the bimetallic hybrid coordination significantly enhances the catalytic activity and electrochemical stability of the materials. This work offers a novel approach for preparing modified carbon cloth anodes with high catalytic activity and durability, laying a crucial foundation for the efficient degradation of the antibiotic DOX.
期刊介绍:
Chemistry—A European Journal is a truly international journal with top quality contributions (2018 ISI Impact Factor: 5.16). It publishes a wide range of outstanding Reviews, Minireviews, Concepts, Full Papers, and Communications from all areas of chemistry and related fields.
Based in Europe Chemistry—A European Journal provides an excellent platform for increasing the visibility of European chemistry as well as for featuring the best research from authors from around the world.
All manuscripts are peer-reviewed, and electronic processing ensures accurate reproduction of text and data, plus short publication times.
The Concepts section provides nonspecialist readers with a useful conceptual guide to unfamiliar areas and experts with new angles on familiar problems.
Chemistry—A European Journal is published on behalf of ChemPubSoc Europe, a group of 16 national chemical societies from within Europe, and supported by the Asian Chemical Editorial Societies. The ChemPubSoc Europe family comprises: Angewandte Chemie, Chemistry—A European Journal, European Journal of Organic Chemistry, European Journal of Inorganic Chemistry, ChemPhysChem, ChemBioChem, ChemMedChem, ChemCatChem, ChemSusChem, ChemPlusChem, ChemElectroChem, and ChemistryOpen.