{"title":"Pestones A and B from a Fungus <i>Pestalotiopsis</i> sp. Bound to Mutant p53 and Changed Its Conformation.","authors":"Yusaku Sadahiro, Misaki Okubo, Yuki Hitora, Natsuko Hitora-Imamura, Shunsuke Kotani, Sachiko Tsukamoto","doi":"10.1021/acs.jnatprod.4c01440","DOIUrl":null,"url":null,"abstract":"<p><p>Oncogenic mutant p53 is one of the targets for cancer therapy, and the development of anticancer drugs that reactivate mutant p53 is a promising strategy. The extract of fungus <i>Pestalotiopsis</i> sp. changed mutant p53 to wild-type-like p53 in Saos-2 (p53<sup>R175H</sup>) cells, as shown by fluorescent immunostaining, and bioassay-guided purification of the extract afforded new dimeric epoxyquinoids, pestones A and B (<b>1</b> and <b>2</b>), and a known compound, rosnecatrone (<b>3</b>). The relative and absolute configurations of <b>1</b> and <b>2</b> were determined based on the spectroscopic data and semisynthesis from <b>3</b>. Compounds <b>1</b> and <b>2</b> altered the conformation of mutant p53 in Saos-2 (p53<sup>R175H</sup>) cells, as shown by immunofluorescence staining. The cellular thermal shift assay analysis showed that <b>1</b> increased the thermostability of mutant p53 in Saos-2 (p53<sup>R175H</sup>) cells, suggesting the direct binding of <b>1</b> to mutant p53. Compounds <b>1</b> and <b>2</b> exhibited cytotoxic activities against Saos-2 (p53<sup>R175H</sup>) cells with IC<sub>50</sub> values of 1.0 and 1.1 μM, respectively. Compound <b>1</b> was found to induce apoptosis in Saos-2 (p53<sup>R175H</sup>) cells by flow cytometry analysis and decreased tumor growth <i>in vivo</i> using a mouse model with HuCCT1 (p53<sup>R175H</sup>) cells.</p>","PeriodicalId":47,"journal":{"name":"Journal of Natural Products ","volume":" ","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Natural Products ","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1021/acs.jnatprod.4c01440","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Oncogenic mutant p53 is one of the targets for cancer therapy, and the development of anticancer drugs that reactivate mutant p53 is a promising strategy. The extract of fungus Pestalotiopsis sp. changed mutant p53 to wild-type-like p53 in Saos-2 (p53R175H) cells, as shown by fluorescent immunostaining, and bioassay-guided purification of the extract afforded new dimeric epoxyquinoids, pestones A and B (1 and 2), and a known compound, rosnecatrone (3). The relative and absolute configurations of 1 and 2 were determined based on the spectroscopic data and semisynthesis from 3. Compounds 1 and 2 altered the conformation of mutant p53 in Saos-2 (p53R175H) cells, as shown by immunofluorescence staining. The cellular thermal shift assay analysis showed that 1 increased the thermostability of mutant p53 in Saos-2 (p53R175H) cells, suggesting the direct binding of 1 to mutant p53. Compounds 1 and 2 exhibited cytotoxic activities against Saos-2 (p53R175H) cells with IC50 values of 1.0 and 1.1 μM, respectively. Compound 1 was found to induce apoptosis in Saos-2 (p53R175H) cells by flow cytometry analysis and decreased tumor growth in vivo using a mouse model with HuCCT1 (p53R175H) cells.
期刊介绍:
The Journal of Natural Products invites and publishes papers that make substantial and scholarly contributions to the area of natural products research. Contributions may relate to the chemistry and/or biochemistry of naturally occurring compounds or the biology of living systems from which they are obtained.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.
When new compounds are reported, manuscripts describing their biological activity are much preferred.
Specifically, there may be articles that describe secondary metabolites of microorganisms, including antibiotics and mycotoxins; physiologically active compounds from terrestrial and marine plants and animals; biochemical studies, including biosynthesis and microbiological transformations; fermentation and plant tissue culture; the isolation, structure elucidation, and chemical synthesis of novel compounds from nature; and the pharmacology of compounds of natural origin.