Bisphenol S interrupted axonogenesis on a human embryonic stem cells derived neural differentiation model: Conserved axon guidance and WNT signaling pathway involved.

IF 6.2 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Ecotoxicology and Environmental Safety Pub Date : 2025-02-14 DOI:10.1016/j.ecoenv.2025.117854
Wanqing Guo, Wei Xiong, Liang Wang, Xiaoya Wang, Yongru Zhou, Yili Chen, Xiaomeng Li, Lishi Zhang, Mengmei Ni, Jinyao Chen
{"title":"Bisphenol S interrupted axonogenesis on a human embryonic stem cells derived neural differentiation model: Conserved axon guidance and WNT signaling pathway involved.","authors":"Wanqing Guo, Wei Xiong, Liang Wang, Xiaoya Wang, Yongru Zhou, Yili Chen, Xiaomeng Li, Lishi Zhang, Mengmei Ni, Jinyao Chen","doi":"10.1016/j.ecoenv.2025.117854","DOIUrl":null,"url":null,"abstract":"<p><p>Bisphenol S (BPS) is the main substitute for bisphenol A (BPA). However, the neurodevelopmental toxicity of BPS and the underlying mechanisms remain unraveled. In present study, the neuro-differentiating human embryonic stem cells, hESC, was exposed to BPS (0-375 µM) at different stages (the precursor stage, the precursor to maturation stage, and the whole differentiation stage) to assess the potential neurodevelopmental toxicity and its mechanisms. The results revealed that BPS exposure interrupted axonogenesis, manifesting a trend of initial stimulating followed by inhibition, and peaked at the intermediate dose (3.75 μM) significantly, then reached the nadir at the high dose (375 μM) significantly in the precursor to maturation stage and the whole differentiation stage. Transcriptomics analysis showed that the main interrupted pathway enriched in axonogenesis, myelination, and neurotransmitter secretion by the GO function analysis and immune-related pathway by the KEGG analysis, besides, conserved axon guidance (Slit-Robo, Netrin-DCC, Semaphorin-Plexin) and WNT signaling pathway was also enriched in KEGG pathway analysis, which previously proved to regulate axonogenesis by directly acting on growth cones and inhibit axon growth by neuroinflammatory responses. And we found that a higher neuroinflammatory response may be induced through whole-differentiation-stage exposure than the response of exposure through the precursor to maturation stage. Overall, our findings indicated the non-monotonic neurodevelopmental toxicity of BPS exposure, and the inhibition of axonogenesis was possibly mediated by conserved axon guidance and WNT signaling pathway, while neuro-immune related pathway should be further investigated.</p>","PeriodicalId":303,"journal":{"name":"Ecotoxicology and Environmental Safety","volume":"291 ","pages":"117854"},"PeriodicalIF":6.2000,"publicationDate":"2025-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecotoxicology and Environmental Safety","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.ecoenv.2025.117854","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Bisphenol S (BPS) is the main substitute for bisphenol A (BPA). However, the neurodevelopmental toxicity of BPS and the underlying mechanisms remain unraveled. In present study, the neuro-differentiating human embryonic stem cells, hESC, was exposed to BPS (0-375 µM) at different stages (the precursor stage, the precursor to maturation stage, and the whole differentiation stage) to assess the potential neurodevelopmental toxicity and its mechanisms. The results revealed that BPS exposure interrupted axonogenesis, manifesting a trend of initial stimulating followed by inhibition, and peaked at the intermediate dose (3.75 μM) significantly, then reached the nadir at the high dose (375 μM) significantly in the precursor to maturation stage and the whole differentiation stage. Transcriptomics analysis showed that the main interrupted pathway enriched in axonogenesis, myelination, and neurotransmitter secretion by the GO function analysis and immune-related pathway by the KEGG analysis, besides, conserved axon guidance (Slit-Robo, Netrin-DCC, Semaphorin-Plexin) and WNT signaling pathway was also enriched in KEGG pathway analysis, which previously proved to regulate axonogenesis by directly acting on growth cones and inhibit axon growth by neuroinflammatory responses. And we found that a higher neuroinflammatory response may be induced through whole-differentiation-stage exposure than the response of exposure through the precursor to maturation stage. Overall, our findings indicated the non-monotonic neurodevelopmental toxicity of BPS exposure, and the inhibition of axonogenesis was possibly mediated by conserved axon guidance and WNT signaling pathway, while neuro-immune related pathway should be further investigated.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
12.10
自引率
5.90%
发文量
1234
审稿时长
88 days
期刊介绍: Ecotoxicology and Environmental Safety is a multi-disciplinary journal that focuses on understanding the exposure and effects of environmental contamination on organisms including human health. The scope of the journal covers three main themes. The topics within these themes, indicated below, include (but are not limited to) the following: Ecotoxicology、Environmental Chemistry、Environmental Safety etc.
期刊最新文献
Bisphenol S interrupted axonogenesis on a human embryonic stem cells derived neural differentiation model: Conserved axon guidance and WNT signaling pathway involved. Maternal urinary levels of PAH metabolites, umbilical cord blood telomere length and anthropometric indices in newborns Impact of variations in airborne microbiota on pneumonia infection: An exploratory study Potential risk of heavy metals release in sediments and soils of the Yellow River Basin (Henan section): A perspective on bioavailability and bioaccessibility Investigating the role and mechanisms of bisphenol compounds in premature ovarian insufficiency using computational biology and bioinformatics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1