The rapid diagnosis of intraamniotic infection with nanopore sequencing.

IF 8.7 1区 医学 Q1 OBSTETRICS & GYNECOLOGY American journal of obstetrics and gynecology Pub Date : 2025-02-12 DOI:10.1016/j.ajog.2025.02.011
Piya Chaemsaithong, Roberto Romero, Pisut Pongchaikul, Puntabut Warintaksa, Paninee Mongkolsuk, Maolee Bhuwapathanapun, Kanyaphat Kotchompoo, Pattaraporn Nimsamer, Worarat Kruasuwan, Orrakanya Amnuaykiatlert, Pornpun Vivithanaporn, Arun Meyyazhagan, Awoniyi Awonuga, Rapeewan Settacomkul, Arunee Singhsnaeh, Warawut Laolerd, Pitak Santanirand, Iyarit Thaipisuttikul, Thidathip Wongsurawat, Piroon Jenjaroenpun
{"title":"The rapid diagnosis of intraamniotic infection with nanopore sequencing.","authors":"Piya Chaemsaithong, Roberto Romero, Pisut Pongchaikul, Puntabut Warintaksa, Paninee Mongkolsuk, Maolee Bhuwapathanapun, Kanyaphat Kotchompoo, Pattaraporn Nimsamer, Worarat Kruasuwan, Orrakanya Amnuaykiatlert, Pornpun Vivithanaporn, Arun Meyyazhagan, Awoniyi Awonuga, Rapeewan Settacomkul, Arunee Singhsnaeh, Warawut Laolerd, Pitak Santanirand, Iyarit Thaipisuttikul, Thidathip Wongsurawat, Piroon Jenjaroenpun","doi":"10.1016/j.ajog.2025.02.011","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Intraamniotic infection (defined as intraamniotic inflammation with microorganisms) is an important cause of the preterm labor syndrome. Methods for the detection of microorganisms in amniotic fluid are culture and/or polymerase chain reaction. However, both methods take time, and results are rarely available for clinical decision-making. Nanopore sequencing technology offers real-time, long-read sequencing that can produce rapid results.</p><p><strong>Objectives: </strong>To determine 1) the diagnostic performance of the 16S rDNA nanopore sequencing method for the identification of microorganisms in patients with intraamniotic inflammation; and 2) the relationship between microbial burden and the intensity of the amniotic fluid inflammatory response.</p><p><strong>Study design: </strong>We performed a prospective cohort study that included singleton pregnancies presenting with symptoms of preterm labor with intact membranes or of preterm prelabor rupture of the membranes. Amniotic fluid samples were obtained for the evaluation of bacteria in the amniotic cavity using cultivation and polymerase chain reaction-based 16S Sanger sequencing methods. Participants were classified into 4 groups according to the results of an amniotic fluid culture, 16S Sanger sequencing, and an amniotic fluid interleukin-6 concentration: 1) no intraamniotic infection and intraamniotic inflammation (interleukin-6 <2.6 ng/mL and no microorganisms in the amniotic cavity determined by culture or 16S Sanger sequencing); 2) microbial invasion of the amniotic cavity without intraamniotic inflammation, defined by the presence of bacteria detected by culture or 16S Sanger sequencing; 3) sterile intraamniotic inflammation (interleukin-6 ≥2.6 ng/mL without microbial invasion of the amniotic cavity); and 4) intraamniotic infection (interkeukin-6 ≥2.6 ng/mL with microbial invasion of the amniotic cavity). Patients who underwent a midtrimester amniocentesis, had no intraamniotic infection or intraamniotic inflammation, and delivered at term represented the control group. 16S rDNA nanopore sequencing was performed and the diagnostic indices for the identification of intraamniotic infection were determined. Bioinformatic analysis was carried out to identify microorganisms, and a read count of at least 100 or a read count exceeding that of the background species from the control group, along with a relative abundance of no less than 1%, was used.</p><p><strong>Results: </strong>1) 16S nanopore sequencing had a sensitivity of 88.9% (8/9), specificity of 95.4% (41/43), positive predictive value of 80.0% (8/10), negative predictive value of 97.6% (41/42), positive likelihood ratio of 19.1 (95% CI, 4.8-75.4), negative likelihood ratio of 0.1 (95% CI, 0.02-0.7), and an accuracy of 94.2% (49/52) for the identification of intraamniotic infection [prevalence, 17% (9/52)]; 2) the microbial load determined by 16S nanopore sequencing had a strong positive correlation with the intensity of an intraamniotic inflammatory response (amniotic fluid interleukin-6 concentration; Spearman's correlation 0.9; p = 0.002); and 3) a subgroup of patients with intraamniotic inflammation did not have bacteria determined by culture, Sanger sequencing, or nanopore 16S, thus confirming the existence of sterile intraamniotic inflammation.</p><p><strong>Conclusion: </strong>16S nanopore sequencing has high diagnostic indices, predictive values, likelihood ratios, and accuracy in the diagnosis of intraamniotic infection.</p>","PeriodicalId":7574,"journal":{"name":"American journal of obstetrics and gynecology","volume":" ","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"American journal of obstetrics and gynecology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.ajog.2025.02.011","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OBSTETRICS & GYNECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Intraamniotic infection (defined as intraamniotic inflammation with microorganisms) is an important cause of the preterm labor syndrome. Methods for the detection of microorganisms in amniotic fluid are culture and/or polymerase chain reaction. However, both methods take time, and results are rarely available for clinical decision-making. Nanopore sequencing technology offers real-time, long-read sequencing that can produce rapid results.

Objectives: To determine 1) the diagnostic performance of the 16S rDNA nanopore sequencing method for the identification of microorganisms in patients with intraamniotic inflammation; and 2) the relationship between microbial burden and the intensity of the amniotic fluid inflammatory response.

Study design: We performed a prospective cohort study that included singleton pregnancies presenting with symptoms of preterm labor with intact membranes or of preterm prelabor rupture of the membranes. Amniotic fluid samples were obtained for the evaluation of bacteria in the amniotic cavity using cultivation and polymerase chain reaction-based 16S Sanger sequencing methods. Participants were classified into 4 groups according to the results of an amniotic fluid culture, 16S Sanger sequencing, and an amniotic fluid interleukin-6 concentration: 1) no intraamniotic infection and intraamniotic inflammation (interleukin-6 <2.6 ng/mL and no microorganisms in the amniotic cavity determined by culture or 16S Sanger sequencing); 2) microbial invasion of the amniotic cavity without intraamniotic inflammation, defined by the presence of bacteria detected by culture or 16S Sanger sequencing; 3) sterile intraamniotic inflammation (interleukin-6 ≥2.6 ng/mL without microbial invasion of the amniotic cavity); and 4) intraamniotic infection (interkeukin-6 ≥2.6 ng/mL with microbial invasion of the amniotic cavity). Patients who underwent a midtrimester amniocentesis, had no intraamniotic infection or intraamniotic inflammation, and delivered at term represented the control group. 16S rDNA nanopore sequencing was performed and the diagnostic indices for the identification of intraamniotic infection were determined. Bioinformatic analysis was carried out to identify microorganisms, and a read count of at least 100 or a read count exceeding that of the background species from the control group, along with a relative abundance of no less than 1%, was used.

Results: 1) 16S nanopore sequencing had a sensitivity of 88.9% (8/9), specificity of 95.4% (41/43), positive predictive value of 80.0% (8/10), negative predictive value of 97.6% (41/42), positive likelihood ratio of 19.1 (95% CI, 4.8-75.4), negative likelihood ratio of 0.1 (95% CI, 0.02-0.7), and an accuracy of 94.2% (49/52) for the identification of intraamniotic infection [prevalence, 17% (9/52)]; 2) the microbial load determined by 16S nanopore sequencing had a strong positive correlation with the intensity of an intraamniotic inflammatory response (amniotic fluid interleukin-6 concentration; Spearman's correlation 0.9; p = 0.002); and 3) a subgroup of patients with intraamniotic inflammation did not have bacteria determined by culture, Sanger sequencing, or nanopore 16S, thus confirming the existence of sterile intraamniotic inflammation.

Conclusion: 16S nanopore sequencing has high diagnostic indices, predictive values, likelihood ratios, and accuracy in the diagnosis of intraamniotic infection.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
15.90
自引率
7.10%
发文量
2237
审稿时长
47 days
期刊介绍: The American Journal of Obstetrics and Gynecology, known as "The Gray Journal," covers the entire spectrum of Obstetrics and Gynecology. It aims to publish original research (clinical and translational), reviews, opinions, video clips, podcasts, and interviews that contribute to understanding health and disease and have the potential to impact the practice of women's healthcare. Focus Areas: Diagnosis, Treatment, Prediction, and Prevention: The journal focuses on research related to the diagnosis, treatment, prediction, and prevention of obstetrical and gynecological disorders. Biology of Reproduction: AJOG publishes work on the biology of reproduction, including studies on reproductive physiology and mechanisms of obstetrical and gynecological diseases. Content Types: Original Research: Clinical and translational research articles. Reviews: Comprehensive reviews providing insights into various aspects of obstetrics and gynecology. Opinions: Perspectives and opinions on important topics in the field. Multimedia Content: Video clips, podcasts, and interviews. Peer Review Process: All submissions undergo a rigorous peer review process to ensure quality and relevance to the field of obstetrics and gynecology.
期刊最新文献
Challenging diagnosis of vasa previa: how can we facilitate the differential diagnosis? A New Perspective on the Immunological Landscape of Preterm Birth: A reply. Cesarean-related PTSD: a complex diathesis-stress model. Considerations in the counselling of the partial agenesis of corpus callosum outcome. Exploring immune system regulation in preterm labor: addressing limitations and expanding the research landscape.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1