Denis Grouzdev, Emmanuelle Pales Espinosa, Stephen Tettelbach, Arnaud Tanguy, Isabelle Boutet, Harrison Tobi, Bassem Allam
{"title":"Survival of the fittest: genomic investigations of the bay scallop reveal a shift in population structure through a summer mortality event.","authors":"Denis Grouzdev, Emmanuelle Pales Espinosa, Stephen Tettelbach, Arnaud Tanguy, Isabelle Boutet, Harrison Tobi, Bassem Allam","doi":"10.1186/s12864-025-11337-y","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Understanding the genetic basis of resilience in marine organisms is critical for conservation and management, particularly in the face of escalating environmental stress and disease outbreaks. The bay scallop Argopecten irradians is a commercially and recreationally important shellfish species found in estuarine and coastal environments of the United States from New England to the Gulf of Mexico. In New York, adult bay scallop populations have been decimated every summer since 2019 leading to the collapse of their fishery. These mortality events were associated with annual outbreaks of an undescribed apicomplexan parasite recently named Bay Scallop Marosporida (BSM) that disrupts scallop kidneys.</p><p><strong>Results: </strong>This study investigates host-pathogen interactions and assesses changes in population structure during BSM-associated mortality events. The research compared wild and aquacultured scallops used for stock enhancement in New York, revealing significant change in population structures throughout the mortality outbreak. The results underscore the selective pressures exerted by BSM infection and environmental stressors, as evidenced by shifts in genetic divergence and allele frequencies particularly in genes associated with kidney function, stress and infection response. Through a detailed genomic and population genetic approach, this research represents a unique case study highlighting the impact of disease on marine biodiversity and advances our understanding of the impact of summer mortality events on the scallop population in NY.</p><p><strong>Conclusions: </strong>This study highlights changes in the genomic structure of bay scallops during a BSM-associated mortality event. Identified mutations (such as the one in the nephrocystin-3-like gene) represent prime candidates for specific targeted investigations to link genotypes to phenotypes. By integrating genomic and epidemiological data, the research provides a basis for understanding the impact of disease on scallop biodiversity. These findings may help guide conservation strategies for sustainable fisheries in the face of environmental change and disease outbreaks.</p>","PeriodicalId":9030,"journal":{"name":"BMC Genomics","volume":"26 1","pages":"146"},"PeriodicalIF":3.5000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11829576/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Genomics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12864-025-11337-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Understanding the genetic basis of resilience in marine organisms is critical for conservation and management, particularly in the face of escalating environmental stress and disease outbreaks. The bay scallop Argopecten irradians is a commercially and recreationally important shellfish species found in estuarine and coastal environments of the United States from New England to the Gulf of Mexico. In New York, adult bay scallop populations have been decimated every summer since 2019 leading to the collapse of their fishery. These mortality events were associated with annual outbreaks of an undescribed apicomplexan parasite recently named Bay Scallop Marosporida (BSM) that disrupts scallop kidneys.
Results: This study investigates host-pathogen interactions and assesses changes in population structure during BSM-associated mortality events. The research compared wild and aquacultured scallops used for stock enhancement in New York, revealing significant change in population structures throughout the mortality outbreak. The results underscore the selective pressures exerted by BSM infection and environmental stressors, as evidenced by shifts in genetic divergence and allele frequencies particularly in genes associated with kidney function, stress and infection response. Through a detailed genomic and population genetic approach, this research represents a unique case study highlighting the impact of disease on marine biodiversity and advances our understanding of the impact of summer mortality events on the scallop population in NY.
Conclusions: This study highlights changes in the genomic structure of bay scallops during a BSM-associated mortality event. Identified mutations (such as the one in the nephrocystin-3-like gene) represent prime candidates for specific targeted investigations to link genotypes to phenotypes. By integrating genomic and epidemiological data, the research provides a basis for understanding the impact of disease on scallop biodiversity. These findings may help guide conservation strategies for sustainable fisheries in the face of environmental change and disease outbreaks.
期刊介绍:
BMC Genomics is an open access, peer-reviewed journal that considers articles on all aspects of genome-scale analysis, functional genomics, and proteomics.
BMC Genomics is part of the BMC series which publishes subject-specific journals focused on the needs of individual research communities across all areas of biology and medicine. We offer an efficient, fair and friendly peer review service, and are committed to publishing all sound science, provided that there is some advance in knowledge presented by the work.