Nehal M El-Deeb, Omar M Ibrahim, Ayman M Kamel, Ahmed I Gomaa, Ahmed M Kenawy
{"title":"Computational development of mushroom-6-glucan/paclitaxel as a synergistic complementary medicine for breast cancer therapy.","authors":"Nehal M El-Deeb, Omar M Ibrahim, Ayman M Kamel, Ahmed I Gomaa, Ahmed M Kenawy","doi":"10.1186/s12906-025-04772-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Breast cancer is chemo-resistant and highly metastatic, often resulting in patient mortality. One of the primary factors contributing to the metastasis and chemotherapy resistance is the presence of cancer stem-like cells. We posited that the natural polysaccharide known as 6-glucans, derived from Pleurotus ostreatus, could effectively counteract the chemotherapy resistance associated with cancer stem-like cells in breast cancer.</p><p><strong>Methods: </strong>We computationally developed a specific dual combinatorial therapy involving 6-glucans and Paclitaxel (PTX) and tested on preclinical 3D mammosphere human tumor models representing receptor-positive and receptor-negative breast cancer. Using this preclinical 3D spheroid technology, we tested the anti-cancer properties of these predicted treatment combinations on mammospheres containing human breast cancer stem cells.</p><p><strong>Results: </strong>Among the 40 distinct combinations examined, computational prediction revealed that the addition of 2.0 mg/mL of 6-glucans to a low dose of 3.0 µg/mL PTX was the sole combination demonstrating a synergistic effect. This optimized synergistic combination therapy displayed a significant inhibitory impact on human cancer epithelial and stem cell migration, evasion, and colony formation. The inclusion of 6-glucans also augmented apoptosis in both breast cancer cells and stem cells, leading to a six-fold reduction in BrdU labeled cells and an increased arrest of cells in the sub-G0 phase. These effects were mediated through mitochondrial dysfunction and the downregulation of associated oncogenes.</p><p><strong>Conclusion: </strong>Our study revealed that the computationally predicted 6-glucans-based binary complementary medicine exhibited sequence- and concentration-dependent anticancer synergistic effects.</p>","PeriodicalId":9128,"journal":{"name":"BMC Complementary Medicine and Therapies","volume":"25 1","pages":"58"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11830196/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Complementary Medicine and Therapies","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12906-025-04772-7","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INTEGRATIVE & COMPLEMENTARY MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Breast cancer is chemo-resistant and highly metastatic, often resulting in patient mortality. One of the primary factors contributing to the metastasis and chemotherapy resistance is the presence of cancer stem-like cells. We posited that the natural polysaccharide known as 6-glucans, derived from Pleurotus ostreatus, could effectively counteract the chemotherapy resistance associated with cancer stem-like cells in breast cancer.
Methods: We computationally developed a specific dual combinatorial therapy involving 6-glucans and Paclitaxel (PTX) and tested on preclinical 3D mammosphere human tumor models representing receptor-positive and receptor-negative breast cancer. Using this preclinical 3D spheroid technology, we tested the anti-cancer properties of these predicted treatment combinations on mammospheres containing human breast cancer stem cells.
Results: Among the 40 distinct combinations examined, computational prediction revealed that the addition of 2.0 mg/mL of 6-glucans to a low dose of 3.0 µg/mL PTX was the sole combination demonstrating a synergistic effect. This optimized synergistic combination therapy displayed a significant inhibitory impact on human cancer epithelial and stem cell migration, evasion, and colony formation. The inclusion of 6-glucans also augmented apoptosis in both breast cancer cells and stem cells, leading to a six-fold reduction in BrdU labeled cells and an increased arrest of cells in the sub-G0 phase. These effects were mediated through mitochondrial dysfunction and the downregulation of associated oncogenes.
Conclusion: Our study revealed that the computationally predicted 6-glucans-based binary complementary medicine exhibited sequence- and concentration-dependent anticancer synergistic effects.