{"title":"Inhibition of IL-21/IL-21R Signaling by Fucoxanthin: Structure-Based and Experimental Analysis.","authors":"Pinglang Ruan, Hui Guo, Ping Yi, Yongjian Chen, Chen Jia, Miao Yang, Yaxiong Deng, Qianwen Li, Fei Gao, Yu Liu, Ming Yang","doi":"10.1002/cbdv.202402522","DOIUrl":null,"url":null,"abstract":"<p><p>Dysregulated activation of the interleukin-21 (IL-21)/IL-21 receptor (IL-21R) signaling pathway is strongly associated with inflammatory and autoimmune disorders, which positions the pathway as a promising therapeutic target. Given the current lack of approved inhibitors or monoclonal antibodies targeting IL-21/IL-21R, we employed a structure-based virtual screening strategy coupled with experimental validation to identify potential IL-21 antagonists from a library of marine natural products provided by TargetMol. Our investigation identified fucoxanthin, a marine-derived carotenoid, as a potent binder to IL-21R, exhibiting a docking score of -8.19 kcal/mol. Molecular dynamics simulations further confirmed the stability of the IL-21R-fucoxanthin complex, with a calculated binding free energy (ΔG) of -33.25 kcal/mol as determined by MM/PBSA analysis. Importantly, fucoxanthin demonstrated significant immunomodulatory effects by reducing the frequency of key immune cell populations, including CD19+ B cells, memory B cells, and activated follicular helper CD4+ T (Tfh) cells in cultures of peripheral blood mononuclear cells in vitro. These findings suggest that fucoxanthin acts as a potential IL-21 antagonist, offering a novel therapeutic avenue for autoimmune diseases driven by aberrant B and T cell differentiation via the IL-21/IL-21R axis.</p>","PeriodicalId":9878,"journal":{"name":"Chemistry & Biodiversity","volume":" ","pages":"e202402522"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry & Biodiversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cbdv.202402522","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Dysregulated activation of the interleukin-21 (IL-21)/IL-21 receptor (IL-21R) signaling pathway is strongly associated with inflammatory and autoimmune disorders, which positions the pathway as a promising therapeutic target. Given the current lack of approved inhibitors or monoclonal antibodies targeting IL-21/IL-21R, we employed a structure-based virtual screening strategy coupled with experimental validation to identify potential IL-21 antagonists from a library of marine natural products provided by TargetMol. Our investigation identified fucoxanthin, a marine-derived carotenoid, as a potent binder to IL-21R, exhibiting a docking score of -8.19 kcal/mol. Molecular dynamics simulations further confirmed the stability of the IL-21R-fucoxanthin complex, with a calculated binding free energy (ΔG) of -33.25 kcal/mol as determined by MM/PBSA analysis. Importantly, fucoxanthin demonstrated significant immunomodulatory effects by reducing the frequency of key immune cell populations, including CD19+ B cells, memory B cells, and activated follicular helper CD4+ T (Tfh) cells in cultures of peripheral blood mononuclear cells in vitro. These findings suggest that fucoxanthin acts as a potential IL-21 antagonist, offering a novel therapeutic avenue for autoimmune diseases driven by aberrant B and T cell differentiation via the IL-21/IL-21R axis.
期刊介绍:
Chemistry & Biodiversity serves as a high-quality publishing forum covering a wide range of biorelevant topics for a truly international audience. This journal publishes both field-specific and interdisciplinary contributions on all aspects of biologically relevant chemistry research in the form of full-length original papers, short communications, invited reviews, and commentaries. It covers all research fields straddling the border between the chemical and biological sciences, with the ultimate goal of broadening our understanding of how nature works at a molecular level.
Since 2017, Chemistry & Biodiversity is published in an online-only format.